BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27687993)

  • 1. Effective production of fermentable sugars from brown macroalgae biomass.
    Wang D; Kim DH; Kim KH
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9439-9450. PubMed ID: 27687993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretreatment and saccharification of red macroalgae to produce fermentable sugars.
    Yun EJ; Kim HT; Cho KM; Yu S; Kim S; Choi IG; Kim KH
    Bioresour Technol; 2016 Jan; 199():311-318. PubMed ID: 26276401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies.
    Kawai S; Murata K
    Int J Mol Sci; 2016 Feb; 17(2):145. PubMed ID: 26861307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red macroalgae as a sustainable resource for bio-based products.
    Yun EJ; Choi IG; Kim KH
    Trends Biotechnol; 2015 May; 33(5):247-9. PubMed ID: 25818231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
    Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI
    J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine macroalgae: an untapped resource for producing fuels and chemicals.
    Wei N; Quarterman J; Jin YS
    Trends Biotechnol; 2013 Feb; 31(2):70-7. PubMed ID: 23245657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platform construction of molecular breeding for utilization of brown macroalgae.
    Takagi T; Kuroda K; Ueda M
    J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic saccharification of brown seaweed for production of fermentable sugars.
    Sharma S; Horn SJ
    Bioresour Technol; 2016 Aug; 213():155-161. PubMed ID: 26961713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: A state-of-the-art review.
    Hong Y; Wu YR
    Bioresour Technol; 2020 Dec; 318():124080. PubMed ID: 32927316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The analysis of macroalgae biomass found around Hawaii for bioethanol production.
    Yoza BA; Masutani EM
    Environ Technol; 2013; 34(13-16):1859-67. PubMed ID: 24350439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423.
    Diallo M; Simons AD; van der Wal H; Collas F; Houweling-Tan B; Kengen SWM; López-Contreras AM
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentials of macroalgae as feedstocks for biorefinery.
    Jung KA; Lim SR; Kim Y; Park JM
    Bioresour Technol; 2013 May; 135():182-90. PubMed ID: 23186669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation.
    Zheng Y; Li Y; Yang Y; Zhang Y; Wang D; Wang P; Wong ACY; Hsieh YSY; Wang D
    J Agric Food Chem; 2022 Feb; 70(5):1438-1453. PubMed ID: 35089725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production.
    Shobana S; Kumar G; Bakonyi P; Saratale GD; Al-Muhtaseb AH; Nemestóthy N; Bélafi-Bakó K; Xia A; Chang JS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1341-1348. PubMed ID: 28602665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production.
    Cheng YS; Chen KY; Chou TH
    Bioresour Technol; 2015 Jan; 176():267-72. PubMed ID: 25461012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion.
    Zhang GC; Liu JJ; Kong II; Kwak S; Jin YS
    Curr Opin Chem Biol; 2015 Dec; 29():49-57. PubMed ID: 26432418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass.
    Zhang J; Wang Y; Du X; Qu Y
    Bioresour Technol; 2020 May; 303():122846. PubMed ID: 32032935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future.
    Pravin R; Baskar G; Rokhum SL; Pugazhendhi A
    Chemosphere; 2023 Oct; 339():139724. PubMed ID: 37541444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.