These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 27688206)
1. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. Xie X; Lin H; Peng X; Xu C; Sun Z; Jiang K; Huang A; Wu X; Tang N; Salvioli A; Bonfante P; Zhao B Mol Plant; 2016 Dec; 9(12):1583-1608. PubMed ID: 27688206 [TBL] [Abstract][Full Text] [Related]
2. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. Moscatiello R; Sello S; Novero M; Negro A; Bonfante P; Navazio L New Phytol; 2014 Aug; 203(3):1012-20. PubMed ID: 24845011 [TBL] [Abstract][Full Text] [Related]
3. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Zhang S; Zhou J; Wang G; Wang X; Liao H Appl Microbiol Biotechnol; 2015 Dec; 99(23):10225-35. PubMed ID: 26278539 [TBL] [Abstract][Full Text] [Related]
4. Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus. Salvioli A; Chiapello M; Fontaine J; Hadj-Sahraoui AL; Grandmougin-Ferjani A; Lanfranco L; Bonfante P Environ Microbiol; 2010 Aug; 12(8):2083-95. PubMed ID: 21966904 [TBL] [Abstract][Full Text] [Related]
5. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Venice F; Ghignone S; Salvioli di Fossalunga A; Amselem J; Novero M; Xianan X; Sędzielewska Toro K; Morin E; Lipzen A; Grigoriev IV; Henrissat B; Martin FM; Bonfante P Environ Microbiol; 2020 Jan; 22(1):122-141. PubMed ID: 31621176 [TBL] [Abstract][Full Text] [Related]
6. Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress. Venice F; de Pinto MC; Novero M; Ghignone S; Salvioli A; Bonfante P Mycorrhiza; 2017 Nov; 27(8):747-759. PubMed ID: 28730540 [TBL] [Abstract][Full Text] [Related]
7. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293 [TBL] [Abstract][Full Text] [Related]
8. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Jiang Y; Wang W; Xie Q; Liu N; Liu L; Wang D; Zhang X; Yang C; Chen X; Tang D; Wang E Science; 2017 Jun; 356(6343):1172-1175. PubMed ID: 28596307 [TBL] [Abstract][Full Text] [Related]
10. Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Bucher M; Wegmüller S; Drissner D Curr Opin Plant Biol; 2009 Aug; 12(4):500-7. PubMed ID: 19576840 [TBL] [Abstract][Full Text] [Related]
11. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita. Funamoto R; Saito K; Oyaizu H; Aono T; Saito M Mycorrhiza; 2015 Jan; 25(1):55-60. PubMed ID: 24838377 [TBL] [Abstract][Full Text] [Related]
12. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641 [TBL] [Abstract][Full Text] [Related]
13. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. Sieh D; Watanabe M; Devers EA; Brueckner F; Hoefgen R; Krajinski F New Phytol; 2013 Jan; 197(2):606-616. PubMed ID: 23190168 [TBL] [Abstract][Full Text] [Related]
14. Programming good relations--development of the arbuscular mycorrhizal symbiosis. Reinhardt D Curr Opin Plant Biol; 2007 Feb; 10(1):98-105. PubMed ID: 17127091 [TBL] [Abstract][Full Text] [Related]
15. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Rich MK; Nouri E; Courty PE; Reinhardt D Trends Plant Sci; 2017 Aug; 22(8):652-660. PubMed ID: 28622919 [TBL] [Abstract][Full Text] [Related]
16. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Helber N; Wippel K; Sauer N; Schaarschmidt S; Hause B; Requena N Plant Cell; 2011 Oct; 23(10):3812-23. PubMed ID: 21972259 [TBL] [Abstract][Full Text] [Related]
17. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Fiorilli V; Lanfranco L; Bonfante P Planta; 2013 May; 237(5):1267-77. PubMed ID: 23361889 [TBL] [Abstract][Full Text] [Related]
18. Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. Ramos AC; Façanha AR; Feijó JA New Phytol; 2008; 178(1):177-188. PubMed ID: 18208473 [TBL] [Abstract][Full Text] [Related]
19. Fungal genes related to calcium homeostasis and signalling are upregulated in symbiotic arbuscular mycorrhiza interactions. Liu Y; Gianinazzi-Pearson V; Arnould C; Wipf D; Zhao B; van Tuinen D Fungal Biol; 2013 Jan; 117(1):22-31. PubMed ID: 23332830 [TBL] [Abstract][Full Text] [Related]
20. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Liu J; Liu J; Liu J; Cui M; Huang Y; Tian Y; Chen A; Xu G Plant Physiol; 2019 May; 180(1):465-479. PubMed ID: 30760639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]