These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2768826)
1. Changes in potassium content and membrane potassium channels in circulating cells from normal volunteers treated with cromakalim. Lijnen P; Weiping T; Fagard R; Staessen J; Amery A J Hypertens; 1989 May; 7(5):403-7. PubMed ID: 2768826 [TBL] [Abstract][Full Text] [Related]
2. Humoral and cellular effects of the K(+)-channel activator cromakalim in man. Lijnen P; Fagard R; Staessen J; Weiping T; Moerman E; Amery A Eur J Clin Pharmacol; 1989; 37(6):609-11. PubMed ID: 2693118 [TBL] [Abstract][Full Text] [Related]
3. Erythrocyte and leucocyte sodium and potassium transport systems during long-term diuretic administration in men. Lijnen P; Hespel P; Fagard R; Staessen J; Goossens W; Lissens W; Amery A J Hypertens; 1988 Aug; 6(8):639-45. PubMed ID: 3183370 [TBL] [Abstract][Full Text] [Related]
4. Erythrocyte sodium and potassium transport systems during longterm administration of the diuretic xipamide in men. Lijnen P; Amery A Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):587-94. PubMed ID: 2586204 [TBL] [Abstract][Full Text] [Related]
5. Stimulation of renin secretion by potassium-channel activation with cromakalim. Ferrier CP; Kurtz A; Lehner P; Shaw SG; Pusterla C; Saxenhofer H; Weidmann P Eur J Clin Pharmacol; 1989; 36(5):443-7. PubMed ID: 2666140 [TBL] [Abstract][Full Text] [Related]
6. Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. Masuda Y; Yoshizumi M; Ishimura Y; Katoh I; Oka M Biochem Pharmacol; 1994 May; 47(10):1751-8. PubMed ID: 7515621 [TBL] [Abstract][Full Text] [Related]
7. Clinical studies with the potassium channel activator cromakalim in normotensive and hypertensive subjects. Donnelly R; Elliott HL; Meredith PA; Reid JL J Cardiovasc Pharmacol; 1990 Nov; 16(5):790-5. PubMed ID: 1703602 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. Quast U; Cook NS J Pharmacol Exp Ther; 1989 Jul; 250(1):261-71. PubMed ID: 2501478 [TBL] [Abstract][Full Text] [Related]
9. Differences in the K(+)-channels opened by cromakalim, acetylcholine and substance P in rat aorta and porcine coronary artery. Bray K; Quast U Br J Pharmacol; 1991 Mar; 102(3):585-94. PubMed ID: 1285396 [TBL] [Abstract][Full Text] [Related]
10. Effect of cromakalim on ischemic and reperfused immature heart: experiments with isolated neonatal New Zealand white rabbit hearts. Shimoe Y; Yoshizumi M; Masuda Y; Kitagawa T; Katoh I Tokushima J Exp Med; 1996 Dec; 43(3-4):135-41. PubMed ID: 9100462 [TBL] [Abstract][Full Text] [Related]
11. Evidence that pinacidil may promote the opening of ATP-sensitive K+ channels yet inhibit the opening of Ca2(+)-activated K+ channels in K(+)-contracted canine mesenteric artery. Masuzawa K; Matsuda T; Asano M Br J Pharmacol; 1990 May; 100(1):143-9. PubMed ID: 2115387 [TBL] [Abstract][Full Text] [Related]
12. Effect of cromakalim and pinacidil on 86Rb efflux from guinea pig urinary bladder smooth muscle. Trivedi S; Stetz S; Levin R; Li J; Kau S Pharmacology; 1994 Sep; 49(3):159-66. PubMed ID: 7972330 [TBL] [Abstract][Full Text] [Related]
13. Effects of cromakalim on the membrane potassium permeability of frog skeletal muscle in vitro. Benton DC; Haylett DG Br J Pharmacol; 1992 Sep; 107(1):152-5. PubMed ID: 1422569 [TBL] [Abstract][Full Text] [Related]
15. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle. Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930 [TBL] [Abstract][Full Text] [Related]
16. Effects of potassium channel toxins from Leiurus quinquestriatus hebraeus venom on responses to cromakalim in rabbit blood vessels. Strong PN; Weir SW; Beech DJ; Hiestand P; Kocher HP Br J Pharmacol; 1989 Nov; 98(3):817-26. PubMed ID: 2531622 [TBL] [Abstract][Full Text] [Related]
17. Possible involvement of ATP-sensitive K+ channels in the relaxant response of dog middle cerebral artery to cromakalim. Masuzawa K; Asano M; Matsuda T; Imaizumi Y; Watanabe M J Pharmacol Exp Ther; 1990 Nov; 255(2):818-25. PubMed ID: 2123008 [TBL] [Abstract][Full Text] [Related]
18. Potassium channel blockade of atrial negative inotropic responses to P1-purinoceptor and muscarinic receptor agonists and to cromakalim. Urquhart RA; Ford WR; Broadley KJ J Cardiovasc Pharmacol; 1993 Feb; 21(2):279-88. PubMed ID: 7679163 [TBL] [Abstract][Full Text] [Related]
19. Analysis of pulmonary and systemic vascular responses to cromakalim, an activator of K+ATP channels. Minkes RK; Kvamme P; Higuera TR; Nossaman BD; Kadowitz PJ Am J Physiol; 1991 Mar; 260(3 Pt 2):H957-66. PubMed ID: 1825747 [TBL] [Abstract][Full Text] [Related]
20. The antitussive effect of cromakalim in rats is not associated with adenosine triphosphate sensitive K+ channels. Kamei J; Iwamoto Y; Narita M; Suzuki T; Misawa M; Kasuya Y Res Commun Chem Pathol Pharmacol; 1993 May; 80(2):201-10. PubMed ID: 8391711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]