These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27688265)

  • 1. Effect of V/III ratio on the structural and optical properties of self-catalysed GaAs nanowires.
    Ahtapodov L; Munshi AM; Nilsen JS; Reinertsen JF; Dheeraj DL; Fimland BO; van Helvoort AT; Weman H
    Nanotechnology; 2016 Nov; 27(44):445711. PubMed ID: 27688265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GaAs/GaAsPBi core-shell nanowires grown by molecular beam epitaxy.
    Himwas C; Yordsri V; Thanachayanont C; Tchernycheva M; Panyakeow S; Kanjanachuchai S
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34781278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography.
    Munshi AM; Dheeraj DL; Fauske VT; Kim DC; Huh J; Reinertsen JF; Ahtapodov L; Lee KD; Heidari B; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2014 Feb; 14(2):960-6. PubMed ID: 24467394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy.
    Park KW; Park CY; Ravindran S; Jang JS; Jo YR; Kim BJ; Lee YT
    Nanoscale Res Lett; 2014; 9(1):626. PubMed ID: 25489280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates.
    Kang JH; Gao Q; Parkinson P; Joyce HJ; Tan HH; Kim Y; Guo Y; Xu H; Zou J; Jagadish C
    Nanotechnology; 2012 Oct; 23(41):415702. PubMed ID: 23018759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of GaAs nanowire morphology and crystal structure.
    Plante MC; Lapierre RR
    Nanotechnology; 2008 Dec; 19(49):495603. PubMed ID: 21730678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates.
    Gas K; Sadowski J; Kasama T; Siusys A; Zaleszczyk W; Wojciechowski T; Morhange JF; Altintaş A; Xu HQ; Szuszkiewicz W
    Nanoscale; 2013 Aug; 5(16):7410-8. PubMed ID: 23832244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates.
    Boras G; Yu X; Fonseka HA; Davis G; Velichko AV; Gott JA; Zeng H; Wu S; Parkinson P; Xu X; Mowbray D; Sanchez AM; Liu H
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(26):14338-14347. PubMed ID: 34276869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.
    Yu X; Li L; Wang H; Xiao J; Shen C; Pan D; Zhao J
    Nanoscale; 2016 May; 8(20):10615-21. PubMed ID: 27194599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.
    Zhou C; Zhang XT; Zheng K; Chen PP; Matsumura S; Lu W; Zou J
    Nanoscale; 2019 Apr; 11(14):6859-6865. PubMed ID: 30912781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell.
    Guan X; Becdelievre J; Benali A; Botella C; Grenet G; Regreny P; Chauvin N; Blanchard NP; Jaurand X; Saint-Girons G; Bachelet R; Gendry M; Penuelas J
    Nanoscale; 2016 Aug; 8(34):15637-44. PubMed ID: 27513669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.
    Zhou HL; Hoang TB; Dheeraj DL; van Helvoort AT; Liu L; Harmand JC; Fimland BO; Weman H
    Nanotechnology; 2009 Oct; 20(41):415701. PubMed ID: 19755725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent properties of single GaAs/AlGaAs core-shell nanowires with Schottky contacts.
    Persano A; Taurino A; Prete P; Lovergine N; Nabet B; Cola A
    Nanotechnology; 2012 Nov; 23(46):465701. PubMed ID: 23093063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A story told by a single nanowire: optical properties of wurtzite GaAs.
    Ahtapodov L; Todorovic J; Olk P; Mjåland T; Slåttnes P; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2012 Dec; 12(12):6090-5. PubMed ID: 23131181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient methodology to correlate structural with optical properties of GaAs nanowires based on scanning electron microscopy.
    Lin WH; Jahn U; Küpers H; Luna E; Lewis RB; Geelhaar L; Brandt O
    Nanotechnology; 2017 Oct; 28(41):415703. PubMed ID: 28767046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes.
    Rieger T; Luysberg M; Schäpers T; Grützmacher D; Lepsa MI
    Nano Lett; 2012 Nov; 12(11):5559-64. PubMed ID: 23030380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformal Growth of Radial InGaAs Quantum Wells in GaAs Nanowires.
    Goktas NI; Dubrovskii VG; LaPierre RR
    J Phys Chem Lett; 2021 Feb; 12(4):1275-1283. PubMed ID: 33497239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires.
    Kang Y; Lin F; Tang J; Dai Q; Hou X; Meng B; Wang D; Wang L; Wei Z
    Phys Chem Chem Phys; 2023 Jan; 25(2):1248-1256. PubMed ID: 36530045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.