These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
3. Impact of experimental design on PET radiomics in predicting somatic mutation status. Yip SSF; Parmar C; Kim J; Huynh E; Mak RH; Aerts HJWL Eur J Radiol; 2017 Dec; 97():8-15. PubMed ID: 29153372 [TBL] [Abstract][Full Text] [Related]
4. Value of pre-therapy Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587 [TBL] [Abstract][Full Text] [Related]
5. FDG uptake in non-small cell lung cancer is not an independent predictor of EGFR or KRAS mutation status: a retrospective analysis of 206 patients. Lee SM; Bae SK; Jung SJ; Kim CK Clin Nucl Med; 2015 Dec; 40(12):950-8. PubMed ID: 26359571 [TBL] [Abstract][Full Text] [Related]
6. Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. Shiri I; Amini M; Nazari M; Hajianfar G; Haddadi Avval A; Abdollahi H; Oveisi M; Arabi H; Rahmim A; Zaidi H Comput Biol Med; 2022 Mar; 142():105230. PubMed ID: 35051856 [TBL] [Abstract][Full Text] [Related]
7. Role of [¹⁸F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Caicedo C; Garcia-Velloso MJ; Lozano MD; Labiano T; Vigil Diaz C; Lopez-Picazo JM; Gurpide A; Zulueta JJ; Richter Echevarria JA; Perez Gracia JL Eur J Nucl Med Mol Imaging; 2014 Nov; 41(11):2058-65. PubMed ID: 24990403 [TBL] [Abstract][Full Text] [Related]
8. Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer. Rios Velazquez E; Parmar C; Liu Y; Coroller TP; Cruz G; Stringfield O; Ye Z; Makrigiorgos M; Fennessy F; Mak RH; Gillies R; Quackenbush J; Aerts HJWL Cancer Res; 2017 Jul; 77(14):3922-3930. PubMed ID: 28566328 [TBL] [Abstract][Full Text] [Related]
9. The role of metabolic tumor volume (MTV) measured by [18F] FDG PET/CT in predicting EGFR gene mutation status in non-small cell lung cancer. Liu A; Han A; Zhu H; Ma L; Huang Y; Li M; Jin F; Yang Q; Yu J Oncotarget; 2017 May; 8(20):33736-33744. PubMed ID: 28422710 [TBL] [Abstract][Full Text] [Related]
11. Value of Lv Z; Fan J; Xu J; Wu F; Huang Q; Guo M; Liao T; Liu S; Lan X; Liao S; Geng W; Jin Y Eur J Nucl Med Mol Imaging; 2018 May; 45(5):735-750. PubMed ID: 29164298 [TBL] [Abstract][Full Text] [Related]
12. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on Koyasu S; Nishio M; Isoda H; Nakamoto Y; Togashi K Ann Nucl Med; 2020 Jan; 34(1):49-57. PubMed ID: 31659591 [TBL] [Abstract][Full Text] [Related]
13. 18F-FDG uptake and EGFR mutations in patients with non-small cell lung cancer: a single-institution retrospective analysis. Na II; Byun BH; Kim KM; Cheon GJ; Choe du H; Koh JS; Lee DY; Ryoo BY; Baek H; Lim SM; Yang SH; Kim CH; Lee JC Lung Cancer; 2010 Jan; 67(1):76-80. PubMed ID: 19371962 [TBL] [Abstract][Full Text] [Related]
14. Imaging phenotype using Lim CH; Cho YS; Choi JY; Lee KH; Lee JK; Min JH; Hyun SH Eur J Nucl Med Mol Imaging; 2020 Aug; 47(9):2113-2122. PubMed ID: 32002592 [TBL] [Abstract][Full Text] [Related]
15. CT-based non-invasive identification of the most common gene mutation status in patients with non-small cell lung cancer. Chen Z; Gao S; Ding C; Luo T; Xu J; Xu S; Li S Med Phys; 2024 Mar; 51(3):1872-1882. PubMed ID: 37706584 [TBL] [Abstract][Full Text] [Related]
16. Metabolic phenotype of stage IV lung adenocarcinoma: relationship with epidermal growth factor receptor mutation. Lee EY; Khong PL; Lee VH; Qian W; Yu X; Wong MP Clin Nucl Med; 2015 Mar; 40(3):e190-5. PubMed ID: 25608155 [TBL] [Abstract][Full Text] [Related]
17. Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer. Nair JKR; Saeed UA; McDougall CC; Sabri A; Kovacina B; Raidu BVS; Khokhar RA; Probst S; Hirsh V; Chankowsky J; Van Kempen LC; Taylor J Can Assoc Radiol J; 2021 Feb; 72(1):109-119. PubMed ID: 32063026 [TBL] [Abstract][Full Text] [Related]
18. Predictive value of multiple metabolic and heterogeneity parameters of Shi A; Wang J; Wang Y; Guo G; Fan C; Liu J Ann Nucl Med; 2022 Apr; 36(4):393-400. PubMed ID: 35084711 [TBL] [Abstract][Full Text] [Related]
19. Predictive Power of a Radiomic Signature Based on Li X; Yin G; Zhang Y; Dai D; Liu J; Chen P; Zhu L; Ma W; Xu W Front Oncol; 2019; 9():1062. PubMed ID: 31681597 [TBL] [Abstract][Full Text] [Related]
20. Using tumor habitat-derived radiomic analysis during pretreatment Zhao H; Su Y; Wang Y; Lyu Z; Xu P; Gu W; Tian L; Fu P Cancer Imaging; 2024 Feb; 24(1):26. PubMed ID: 38342905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]