These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 27688755)
1. Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner. Chiou YY; Yang Y; Rashid N; Ye R; Selby CP; Sancar A Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6072-E6079. PubMed ID: 27688755 [TBL] [Abstract][Full Text] [Related]
2. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Ye R; Selby CP; Chiou YY; Ozkan-Dagliyan I; Gaddameedhi S; Sancar A Genes Dev; 2014 Sep; 28(18):1989-98. PubMed ID: 25228643 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanism of the repressive phase of the mammalian circadian clock. Cao X; Yang Y; Selby CP; Liu Z; Sancar A Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443219 [TBL] [Abstract][Full Text] [Related]
4. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK). Matsumura R; Tsuchiya Y; Tokuda I; Matsuo T; Sato M; Node K; Nishida E; Akashi M J Biol Chem; 2014 Nov; 289(46):32064-32072. PubMed ID: 25271155 [TBL] [Abstract][Full Text] [Related]
5. A positive role for PERIOD in mammalian circadian gene expression. Akashi M; Okamoto A; Tsuchiya Y; Todo T; Nishida E; Node K Cell Rep; 2014 May; 7(4):1056-64. PubMed ID: 24794436 [TBL] [Abstract][Full Text] [Related]
6. Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Kriebs A; Jordan SD; Soto E; Henriksson E; Sandate CR; Vaughan ME; Chan AB; Duglan D; Papp SJ; Huber AL; Afetian ME; Yu RT; Zhao X; Downes M; Evans RM; Lamia KA Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8776-8781. PubMed ID: 28751364 [TBL] [Abstract][Full Text] [Related]
7. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638 [TBL] [Abstract][Full Text] [Related]
8. Biochemical analysis of the canonical model for the mammalian circadian clock. Ye R; Selby CP; Ozturk N; Annayev Y; Sancar A J Biol Chem; 2011 Jul; 286(29):25891-902. PubMed ID: 21613214 [TBL] [Abstract][Full Text] [Related]
9. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506 [TBL] [Abstract][Full Text] [Related]
11. The cryptochrome inhibitor KS15 enhances E-box-mediated transcription by disrupting the feedback action of a circadian transcription-repressor complex. Jang J; Chung S; Choi Y; Lim HY; Son Y; Chun SK; Son GH; Kim K; Suh YG; Jung JW Life Sci; 2018 May; 200():49-55. PubMed ID: 29534992 [TBL] [Abstract][Full Text] [Related]
12. Episodes of prolactin gene expression in GH3 cells are dependent on selective promoter binding of multiple circadian elements. Bose S; Boockfor FR Endocrinology; 2010 May; 151(5):2287-96. PubMed ID: 20215567 [TBL] [Abstract][Full Text] [Related]
13. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926 [TBL] [Abstract][Full Text] [Related]
14. Quantification of interactions among circadian clock proteins via surface plasmon resonance. Kepsutlu B; Kizilel R; Kizilel S J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278 [TBL] [Abstract][Full Text] [Related]
15. Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation. Kondratov RV; Shamanna RK; Kondratova AA; Gorbacheva VY; Antoch MP FASEB J; 2006 Mar; 20(3):530-2. PubMed ID: 16507766 [TBL] [Abstract][Full Text] [Related]
16. The Circadian Clock, Nutritional Signals and Reproduction: A Close Relationship. Ono M; Ando H; Daikoku T; Fujiwara T; Mieda M; Mizumoto Y; Iizuka T; Kagami K; Hosono T; Nomura S; Toyoda N; Sekizuka-Kagami N; Maida Y; Kuji N; Nishi H; Fujiwara H Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675058 [TBL] [Abstract][Full Text] [Related]
17. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415 [TBL] [Abstract][Full Text] [Related]
18. Evidence for clock genes circadian rhythms in human full-term placenta. Pérez S; Murias L; Fernández-Plaza C; Díaz I; González C; Otero J; Díaz E Syst Biol Reprod Med; 2015; 61(6):360-6. PubMed ID: 26247999 [TBL] [Abstract][Full Text] [Related]
19. Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene. Xu CX; Krager SL; Liao DF; Tischkau SA Toxicol Sci; 2010 May; 115(1):98-108. PubMed ID: 20106950 [TBL] [Abstract][Full Text] [Related]
20. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. Annayev Y; Adar S; Chiou YY; Lieb JD; Sancar A; Ye R J Biol Chem; 2014 Feb; 289(8):5013-24. PubMed ID: 24385426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]