These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 27689131)
1. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations. Sánchez-Garduño F; Pérez-Velázquez J ScientificWorldJournal; 2016; 2016():5620839. PubMed ID: 27689131 [TBL] [Abstract][Full Text] [Related]
2. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection. Sabelnikov VA; Lipatnikov AN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033004. PubMed ID: 25314526 [TBL] [Abstract][Full Text] [Related]
3. Existence of Traveling Waves for the Generalized F-KPP Equation. Kollár R; Novak S Bull Math Biol; 2017 Mar; 79(3):525-559. PubMed ID: 28008475 [TBL] [Abstract][Full Text] [Related]
4. Traveling waves of di usive disease models with time delay and degeneracy. Huang XM; Wang XS Math Biosci Eng; 2019 Mar; 16(4):2391-2410. PubMed ID: 31137219 [TBL] [Abstract][Full Text] [Related]
5. Front and pulse solutions for a system of reaction-diffusion equations with degenerate source terms. Bradshaw-Hajek BH; Wylie JJ Phys Rev E; 2019 Feb; 99(2-1):022214. PubMed ID: 30934314 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions. Hohn ME; Li B; Yang W J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722 [TBL] [Abstract][Full Text] [Related]
7. Analytical and numerical study of travelling waves using the Maxwell-Cattaneo relaxation model extended to reaction-advection-diffusion systems. Sabelnikov VA; Petrova NN; Lipatnikov AN Phys Rev E; 2016 Oct; 94(4-1):042218. PubMed ID: 27841507 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon. Kim YJ; Mimura M; Yoon C Bull Math Biol; 2023 Mar; 85(5):35. PubMed ID: 36971898 [TBL] [Abstract][Full Text] [Related]
9. Oscillatory convection in binary mixtures: thermodiffusion, solutal buoyancy, and advection. Jung D; Matura P; Lücke M Eur Phys J E Soft Matter; 2004 Nov; 15(3):293-304. PubMed ID: 15592769 [TBL] [Abstract][Full Text] [Related]
10. Stability of position control of traveling waves in reaction-diffusion systems. Löber J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062904. PubMed ID: 25019848 [TBL] [Abstract][Full Text] [Related]
12. Traveling wave solution and qualitative behavior of fractional stochastic Kraenkel-Manna-Merle equation in ferromagnetic materials. Luo J Sci Rep; 2024 Jun; 14(1):12990. PubMed ID: 38844779 [TBL] [Abstract][Full Text] [Related]
13. Traveling waves in nonlinear media with dispersion, dissipation, and reaction. Koçak H Chaos; 2020 Sep; 30(9):093143. PubMed ID: 33003942 [TBL] [Abstract][Full Text] [Related]
14. Dynamical systems theory for the Gardner equation. Saha A; Talukdar B; Chatterjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023204. PubMed ID: 25353592 [TBL] [Abstract][Full Text] [Related]
15. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mansour MB Math Biosci Eng; 2009 Jan; 6(1):83-91. PubMed ID: 19292509 [TBL] [Abstract][Full Text] [Related]
16. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Harko T; Mak MK Math Biosci Eng; 2015 Feb; 12(1):41-69. PubMed ID: 25811333 [TBL] [Abstract][Full Text] [Related]
17. Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves. Kneer F; Obermayer K; Dahlem MA Eur Phys J E Soft Matter; 2015 Feb; 38(2):95. PubMed ID: 25704900 [TBL] [Abstract][Full Text] [Related]
18. Self-similar solutions to a density-dependent reaction-diffusion model. Ngamsaad W; Khompurngson K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066120. PubMed ID: 23005175 [TBL] [Abstract][Full Text] [Related]
19. Modeling velocity in gradient flows with coupled-map lattices with advection. Lind PG; Corte-Real J; Gallas JA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016219. PubMed ID: 12241473 [TBL] [Abstract][Full Text] [Related]
20. Traveling waves in coupled reaction-diffusion models with degenerate sources. Wylie JJ; Miura RM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021909. PubMed ID: 17025474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]