These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 27689272)

  • 1. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics.
    Han X; Zou CL; Tang HX
    Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum acoustics with superconducting qubits.
    Chu Y; Kharel P; Renninger WH; Burkhart LD; Frunzio L; Rakich PT; Schoelkopf RJ
    Science; 2017 Oct; 358(6360):199-202. PubMed ID: 28935771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
    Pirkkalainen JM; Cho SU; Li J; Paraoanu GS; Hakonen PJ; Sillanpää MA
    Nature; 2013 Feb; 494(7436):211-5. PubMed ID: 23407536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of a quantum metamaterial using superconducting qubits.
    Macha P; Oelsner G; Reiner JM; Marthaler M; André S; Schön G; Hübner U; Meyer HG; Il'ichev E; Ustinov AV
    Nat Commun; 2014 Oct; 5():5146. PubMed ID: 25312205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative Cooling of a Superconducting Resonator.
    Xu M; Han X; Zou CL; Fu W; Xu Y; Zhong C; Jiang L; Tang HX
    Phys Rev Lett; 2020 Jan; 124(3):033602. PubMed ID: 32031838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits.
    Bonizzoni C; Ghirri A; Bader K; van Slageren J; Perfetti M; Sorace L; Lan Y; Fuhr O; Ruben M; Affronte M
    Dalton Trans; 2016 Nov; 45(42):16596-16603. PubMed ID: 27468434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting Cavity Electromechanics: The Realization of an Acoustic Frequency Comb at Microwave Frequencies.
    Han X; Zou CL; Fu W; Xu M; Xu Y; Tang HX
    Phys Rev Lett; 2022 Sep; 129(10):107701. PubMed ID: 36112440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical coupling between a nuclear spin ensemble and electromechanical phonons.
    Okazaki Y; Mahboob I; Onomitsu K; Sasaki S; Nakamura S; Kaneko NH; Yamaguchi H
    Nat Commun; 2018 Aug; 9(1):2993. PubMed ID: 30154466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.
    Rouxinol F; Hao Y; Brito F; Caldeira AO; Irish EK; LaHaye MD
    Nanotechnology; 2016 Sep; 27(36):364003. PubMed ID: 27483428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
    Moores BA; Sletten LR; Viennot JJ; Lehnert KW
    Phys Rev Lett; 2018 Jun; 120(22):227701. PubMed ID: 29906138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate Tunable Cooperativity between Vibrational Modes.
    Prasad P; Arora N; Naik AK
    Nano Lett; 2019 Sep; 19(9):5862-5867. PubMed ID: 31408355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator.
    Probst S; Rotzinger H; Wünsch S; Jung P; Jerger M; Siegel M; Ustinov AV; Bushev PA
    Phys Rev Lett; 2013 Apr; 110(15):157001. PubMed ID: 25167299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.