These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27689272)

  • 21. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator.
    Probst S; Rotzinger H; Wünsch S; Jung P; Jerger M; Siegel M; Ustinov AV; Bushev PA
    Phys Rev Lett; 2013 Apr; 110(15):157001. PubMed ID: 25167299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.
    Viennot JJ; Dartiailh MC; Cottet A; Kontos T
    Science; 2015 Jul; 349(6246):408-11. PubMed ID: 26206930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum state engineering with circuit electromechanical three-body interactions.
    Abdi M; Pernpeintner M; Gross R; Huebl H; Hartmann MJ
    Phys Rev Lett; 2015 May; 114(17):173602. PubMed ID: 25978232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits.
    Bonizzoni C; Ghirri A; Atzori M; Sorace L; Sessoli R; Affronte M
    Sci Rep; 2017 Oct; 7(1):13096. PubMed ID: 29026118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip.
    Bernon S; Hattermann H; Bothner D; Knufinke M; Weiss P; Jessen F; Cano D; Kemmler M; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2013; 4():2380. PubMed ID: 23986123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong Coupling between Magnons and Microwave Photons in On-Chip Ferromagnet-Superconductor Thin-Film Devices.
    Li Y; Polakovic T; Wang YL; Xu J; Lendinez S; Zhang Z; Ding J; Khaire T; Saglam H; Divan R; Pearson J; Kwok WK; Xiao Z; Novosad V; Hoffmann A; Zhang W
    Phys Rev Lett; 2019 Sep; 123(10):107701. PubMed ID: 31573284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.
    Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE
    Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
    Shanks WE; Underwood DL; Houck AA
    Nat Commun; 2013; 4():1991. PubMed ID: 23744062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling superconducting qubits via a cavity bus.
    Majer J; Chow JM; Gambetta JM; Koch J; Johnson BR; Schreier JA; Frunzio L; Schuster DI; Houck AA; Wallraff A; Blais A; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7161):443-7. PubMed ID: 17898763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator.
    Chu Y; Kharel P; Yoon T; Frunzio L; Rakich PT; Schoelkopf RJ
    Nature; 2018 Nov; 563(7733):666-670. PubMed ID: 30464340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics.
    Gokhale VJ; Downey BP; Katzer DS; Nepal N; Lang AC; Stroud RM; Meyer DJ
    Nat Commun; 2020 May; 11(1):2314. PubMed ID: 32385280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum ground state and single-phonon control of a mechanical resonator.
    O'Connell AD; Hofheinz M; Ansmann M; Bialczak RC; Lenander M; Lucero E; Neeley M; Sank D; Wang H; Weides M; Wenner J; Martinis JM; Cleland AN
    Nature; 2010 Apr; 464(7289):697-703. PubMed ID: 20237473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum control of surface acoustic-wave phonons.
    Satzinger KJ; Zhong YP; Chang HS; Peairs GA; Bienfait A; Chou MH; Cleland AY; Conner CR; Dumur É; Grebel J; Gutierrez I; November BH; Povey RG; Whiteley SJ; Awschalom DD; Schuster DI; Cleland AN
    Nature; 2018 Nov; 563(7733):661-665. PubMed ID: 30464339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling graphene mechanical resonators to superconducting microwave cavities.
    Weber P; Güttinger J; Tsioutsios I; Chang DE; Bachtold A
    Nano Lett; 2014 May; 14(5):2854-60. PubMed ID: 24745803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cascaded optical transparency in multimode-cavity optomechanical systems.
    Fan L; Fong KY; Poot M; Tang HX
    Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.