These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27689354)

  • 1. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal.
    Ranjitkar S; Sujakhu NM; Merz J; Kindt R; Xu J; Matin MA; Ali M; Zomer RJ
    PLoS One; 2016; 11(9):e0163916. PubMed ID: 27689354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of pollination services and coffee suitability under climate change.
    Imbach P; Fung E; Hannah L; Navarro-Racines CE; Roubik DW; Ricketts TH; Harvey CA; Donatti CI; Läderach P; Locatelli B; Roehrdanz PR
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10438-10442. PubMed ID: 28893985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change.
    Bunn C; Läderach P; Pérez Jimenez JG; Montagnon C; Schilling T
    PLoS One; 2015; 10(10):e0140490. PubMed ID: 26505637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expected global suitability of coffee, cashew and avocado due to climate change.
    Grüter R; Trachsel T; Laube P; Jaisli I
    PLoS One; 2022; 17(1):e0261976. PubMed ID: 35081123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of livelihood assets, experienced shocks and perceived risks on smallholder coffee farming practices in Peru.
    Jezeer RE; Verweij PA; Boot RGA; Junginger M; Santos MJ
    J Environ Manage; 2019 Jul; 242():496-506. PubMed ID: 31075644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilience potential of the Ethiopian coffee sector under climate change.
    Moat J; Williams J; Baena S; Wilkinson T; Gole TW; Challa ZK; Demissew S; Davis AP
    Nat Plants; 2017 Jun; 3():17081. PubMed ID: 28628132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecosystem-based adaptation for increased agricultural productivity by smallholder farmers in Nepal.
    Bhusal K; Udas E; Bhatta LD
    PLoS One; 2022; 17(6):e0269586. PubMed ID: 35700203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage.
    Magrach A; Ghazoul J
    PLoS One; 2015; 10(7):e0133071. PubMed ID: 26177201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supporting local farming communities and crop production resilience to climate change through giant reed (Arundo donax L.) cultivation: An Italian case study.
    Bonfante A; Impagliazzo A; Fiorentino N; Langella G; Mori M; Fagnano M
    Sci Total Environ; 2017 Dec; 601-602():603-613. PubMed ID: 28575836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recommendations for the regionalizing of coffee cultivation in Colombia: a methodological proposal based on agro-climatic indices.
    García L JC; Posada-Suárez H; Läderach P
    PLoS One; 2014; 9(12):e113510. PubMed ID: 25436456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.
    Ovalle-Rivera O; Läderach P; Bunn C; Obersteiner M; Schroth G
    PLoS One; 2015; 10(4):e0124155. PubMed ID: 25875230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resilience of smallholder cropping to climatic variability.
    Lamichhane P; Miller KK; Hadjikakou M; Bryan BA
    Sci Total Environ; 2020 Jun; 719():137464. PubMed ID: 32229014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.
    Baca M; Läderach P; Haggar J; Schroth G; Ovalle O
    PLoS One; 2014; 9(2):e88463. PubMed ID: 24586328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change and specialty coffee potential in Ethiopia.
    Chemura A; Mudereri BT; Yalew AW; Gornott C
    Sci Rep; 2021 Apr; 11(1):8097. PubMed ID: 33854166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.
    Fuhrer J; Smith P; Gobiet A
    Sci Total Environ; 2014 Sep; 493():1232-41. PubMed ID: 23830922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential high-quality growing tea regions in Ecuador: an alternative cash crop for Ecuadorian small landholders.
    Rivera-Parra JL; Peña-Loyola PJ
    J Sci Food Agric; 2020 Mar; 100(4):1827-1831. PubMed ID: 31875429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of community engagement in the adoption of new agricultural biotechnologies by farmers: the case of the Africa harvest tissue-culture banana in Kenya.
    Bandewar SV; Wambugu F; Richardson E; Lavery JV
    BMC Biotechnol; 2017 Mar; 17(1):28. PubMed ID: 28288608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation sequencing of the soil nematode community enables the sustainability of banana plantations to be monitored.
    Bell CA; Namaganda J; Urwin PE; Atkinson HJ
    Appl Soil Ecol; 2021 Oct; 166():None. PubMed ID: 34602751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential impact of future climate change on the production of a major food and cash crop in tropical (sub)montane homegardens.
    Watts M; Mpanda M; Hemp A; Peh KS
    Sci Total Environ; 2023 Mar; 865():161263. PubMed ID: 36592919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.