BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27689394)

  • 1. Water Rearrangements upon Disorder-to-Order Amyloid Transition.
    Arya S; Singh AK; Khan T; Bhattacharya M; Datta A; Mukhopadhyay S
    J Phys Chem Lett; 2016 Oct; 7(20):4105-4110. PubMed ID: 27689394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein.
    Dogra P; Arya S; Singh AK; Datta A; Mukhopadhyay S
    J Phys Chem B; 2022 Jan; 126(2):443-452. PubMed ID: 34986640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein.
    Arya S; Mukhopadhyay S
    J Phys Chem B; 2014 Aug; 118(31):9191-8. PubMed ID: 25035108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Water in Amyloid-Competent Oligomers of the Prion Protein.
    Dalal V; Arya S; Mukhopadhyay S
    Chemphyschem; 2016 Sep; 17(18):2804-7. PubMed ID: 27253720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein.
    Arya S; Singh AK; Bhasne K; Dogra P; Datta A; Das P; Mukhopadhyay S
    Biophys J; 2018 Jun; 114(11):2540-2551. PubMed ID: 29874605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational transition of κ-casein in micellar environment: Insight from the tryptophan fluorescence.
    Mishra S; Meher G; Chakraborty H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Nov; 186():99-104. PubMed ID: 28622544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of water in the primary nucleation of protein amyloid aggregation.
    Camino JD; Gracia P; Cremades N
    Biophys Chem; 2021 Feb; 269():106520. PubMed ID: 33341693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confinement dependence of protein-associated solvent dynamics around different classes of proteins, from the EPR spin probe perspective.
    Li W; Whitcomb KL; Warncke K
    Phys Chem Chem Phys; 2022 Oct; 24(38):23919-23928. PubMed ID: 36165617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Salt-Induced Oligomerization of Human β2-Microglobulin at Low pH.
    Narang D; Singh A; Swasthi HM; Mukhopadhyay S
    J Phys Chem B; 2016 Aug; 120(32):7815-23. PubMed ID: 27467899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins.
    Jain N; Narang D; Bhasne K; Dalal V; Arya S; Bhattacharya M; Mukhopadhyay S
    Biophys J; 2016 Aug; 111(4):768-774. PubMed ID: 27558720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.
    Liu J; Dehle FC; Liu Y; Bahraminejad E; Ecroyd H; Thorn DC; Carver JA
    J Agric Food Chem; 2016 Feb; 64(6):1335-43. PubMed ID: 26807595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental conformational disorder and dynamics in the intrinsically disordered protein α-synuclein and its chain length dependence.
    Grupi A; Haas E
    J Mol Biol; 2011 Feb; 405(5):1267-83. PubMed ID: 21108951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein.
    Werner TER; Horvath I; Wittung-Stafshede P
    QRB Discov; 2021; 2():e2. PubMed ID: 37529678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.