These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27689443)

  • 1. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.
    Ma J
    J Phys Chem A; 2016 Oct; 120(41):7989-7997. PubMed ID: 27689443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave Hotspots: Thermal Nonequilibrium Dynamics from the Perspective of Quantum States.
    Hu Y; Ma D; Ma J
    J Phys Chem A; 2021 Apr; 125(12):2690-2696. PubMed ID: 33734701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and Nonthermal Microwave Effects of Ethanol and Hexane-Mixed Solution as Revealed by In Situ Microwave Irradiation Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.
    Tasei Y; Mijiddorj B; Fujito T; Kawamura I; Ueda K; Naito A
    J Phys Chem B; 2020 Oct; 124(43):9615-9624. PubMed ID: 33079541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of 1,1,1-trifluoroethane is an intrinsic RRKM process: classical trajectories and successful master equation modeling.
    Matsugi A
    J Phys Chem A; 2015 Mar; 119(10):1846-58. PubMed ID: 25664485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions.
    Reddy PM; Huang YS; Chen CT; Chang PC; Ho YP
    J Proteomics; 2013 Mar; 80():160-70. PubMed ID: 23352896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.
    Wan HD; Sun SY; Hu XY; Xia YM
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1454-62. PubMed ID: 22262019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A master equation for spin systems far from equilibrium.
    Bengs C; Levitt MH
    J Magn Reson; 2020 Jan; 310():106645. PubMed ID: 31816583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ analysis of reaction kinetics of reduction promotion of NiMn
    Fukushima J; Takayama S; Goto H; Sato M; Takizawa H
    Phys Chem Chem Phys; 2017 Jul; 19(27):17904-17908. PubMed ID: 28660956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of Coupling in Microwave-Heating Polar-Molecule Reactions.
    Liu X; Huang H; Yang L; Huang K
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36771028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonthermal vibrations in biased molecular junctions.
    Wang T; Nian LL; Lü JT
    Phys Rev E; 2020 Aug; 102(2-1):022127. PubMed ID: 32942477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Furfural Synthesis from d-Xylose in the Presence of Sodium Chloride: Microwave versus Conventional Heating.
    Xiouras C; Radacsi N; Sturm G; Stefanidis GD
    ChemSusChem; 2016 Aug; 9(16):2159-66. PubMed ID: 27416892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.
    Weston RE; Nguyen TL; Stanton JF; Barker JR
    J Phys Chem A; 2013 Feb; 117(5):821-35. PubMed ID: 23317151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.
    Gutmann B; Obermayer D; Reichart B; Prekodravac B; Irfan M; Kremsner JM; Kappe CO
    Chemistry; 2010 Oct; 16(40):12182-94. PubMed ID: 20845418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.