These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27689539)

  • 1. DFT Study of Hydrogen-Bonding Interaction, Solvation Effect, and Electric-Field Effect on Raman Spectra of Hydrated Proton.
    Pang R; Yu LJ; Zhang M; Tian ZQ; Wu DY
    J Phys Chem A; 2016 Oct; 120(42):8273-8284. PubMed ID: 27689539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eigen and Zundel forms of small protonated water clusters: structures and infrared spectra.
    Park M; Shin I; Singh NJ; Kim KS
    J Phys Chem A; 2007 Oct; 111(42):10692-702. PubMed ID: 17910422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling and assignment of IR spectra of the hydrated excess proton in isotopically dilute water.
    Biswas R; Carpenter W; Voth GA; Tokmakoff A
    J Chem Phys; 2016 Oct; 145(15):154504. PubMed ID: 27782492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IR spectral assignments for the hydrated excess proton in liquid water.
    Biswas R; Carpenter W; Fournier JA; Voth GA; Tokmakoff A
    J Chem Phys; 2017 Apr; 146(15):154507. PubMed ID: 28433032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer reactions and dynamics in protonated water clusters.
    Lao-Ngam C; Asawakun P; Wannarat S; Sagarik K
    Phys Chem Chem Phys; 2011 Mar; 13(10):4562-75. PubMed ID: 21283848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The solvation effect on the rattling behaviour of the hydrated excess proton in water.
    Dong S; Bi S
    Phys Chem Chem Phys; 2019 Oct; 21(40):22385-22389. PubMed ID: 31577286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complete assignment of the vibrational spectra of sucrose in aqueous medium based on the SQM methodology and SCRF calculations.
    Brizuela AB; Castillo MV; Raschi AB; Davies L; Romano E; Brandán SA
    Carbohydr Res; 2014 Mar; 388():112-24. PubMed ID: 24632216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra.
    Smiechowski M; Stangret J
    J Chem Phys; 2006 Nov; 125(20):204508. PubMed ID: 17144716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared Spectra of Protonated Water Clusters, H
    Yagi K; Thomsen B
    J Phys Chem A; 2017 Mar; 121(12):2386-2398. PubMed ID: 28276687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).
    Singh JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():625-40. PubMed ID: 25244296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined experimental and density functional theory investigation of the hydrogen bonding of 2-cyclohexen-1-one and 3-methyl- 2-cyclohexen-1-one in solvents.
    Zhou HQ; Li L; Zhao Y; Wang HG; Zheng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 208():32-39. PubMed ID: 30290292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hydrated Excess Proton in the Zundel Cation H5 O2 (+) : The Role of Ultrafast Solvent Fluctuations.
    Dahms F; Costard R; Pines E; Fingerhut BP; Nibbering ET; Elsaesser T
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10600-5. PubMed ID: 27374368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Local Covalent Bonding to Extended Electric Field Interactions in Proton Hydration.
    Ekimova M; Kleine C; Ludwig J; Ochmann M; Agrenius TEG; Kozari E; Pines D; Pines E; Huse N; Wernet P; Odelius M; Nibbering ETJ
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211066. PubMed ID: 36102247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study.
    Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ
    J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water.
    Goyal P; Elstner M; Cui Q
    J Phys Chem B; 2011 May; 115(20):6790-805. PubMed ID: 21526802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, energy, and IR spectra of I2*-.nH2O clusters (n=1-8): a theoretical study.
    Pathak AK; Mukherjee T; Maity DK
    J Chem Phys; 2007 Jan; 126(3):034301. PubMed ID: 17249865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.