These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27689747)

  • 1. Electrically Conductive Hierarchical Carbon Nanotube Networks with Tunable Mechanical Response.
    Davis BF; Yan X; Muralidharan N; Oakes L; Pint CL; Maschmann MR
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28004-28011. PubMed ID: 27689747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation response of conformally coated carbon nanotube forest.
    Abadi PP; Maschmann MR; Baur JW; Graham S; Cola BA
    Nanotechnology; 2013 Nov; 24(47):475707. PubMed ID: 24192522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis.
    Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.
    Watanabe H; Ishii J; Ota K
    Nanotechnology; 2016 Aug; 27(33):335605. PubMed ID: 27389659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.
    Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ
    ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive characterization of structural hierarchy within aligned carbon nanotube assemblies.
    Verploegen E; Hart AJ; De Volder M; Tawfick S; Chia KK; Cohen RE
    J Appl Phys; 2011 May; 109(9):94316-943165. PubMed ID: 21709723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.
    He D; Fan B; Zhao H; Lu X; Yang M; Liu Y; Bai J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2948-2958. PubMed ID: 28056505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate.
    Szabó A; Kecsenovity E; Pápa Z; Gyulavári T; Németh K; Horvath E; Hernadi K
    Sci Rep; 2017 Aug; 7(1):9557. PubMed ID: 28842644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
    Aksu C; Ingram W; Bradford PD; Jur JS
    Nanotechnology; 2018 Aug; 29(33):335302. PubMed ID: 29794331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxy Nanocomposites with Carbon Nanotubes Produced by Floating Catalyst CVD.
    Mordkovich VZ; Kondrashov SV; Karaeva AR; Urvanov SA; Kazennov NV; Mitberg EB; Pushina EA
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes.
    Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB
    Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.
    Faraji S; Stano K; Akyildiz H; Yildiz O; Jur JS; Bradford PD
    Nanotechnology; 2018 Jul; 29(29):295602. PubMed ID: 29697060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of Native Oxide Enables Multifunctional, Free-Form Carbon Nanotube-Metal Hierarchical Architectures.
    Cui K; Wardle BL
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35212-35220. PubMed ID: 31514497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Electromechanical Sensitivity of Carbon-Nanotube-Coated Microfibers.
    Bellott E; Li Y; Gunter C; Kovaleski S; Maschmann MR
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.
    Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.