These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27690023)

  • 1. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors.
    Liu DX; Wu X; Du W; Wang C; Xu T
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Phase Classification and Assist Torque Prediction for a Lower Limb Exoskeleton System Using Kernel Recursive Least-Squares Method.
    Ma Y; Wu X; Wang C; Yi Z; Liang G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Recognition and Assistance Parameter Prediction Determination Based on Kinematic Information Measured by Inertial Measurement Units.
    Xiang Q; Wang J; Liu Y; Guo S; Liu L
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton.
    Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R
    Front Robot AI; 2019; 6():36. PubMed ID: 33501052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion Mode Recognition with Inertial Signals for Hip Joint Exoskeleton.
    Du G; Zeng J; Gong C; Zheng E
    Appl Bionics Biomech; 2021; 2021():6673018. PubMed ID: 34335872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.
    Su B; Gutierrez-Farewik EM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons.
    Wei B; Ding Z; Yi C; Guo H; Wang Z; Zhu J; Jiang F
    Front Neurorobot; 2021; 15():704226. PubMed ID: 34447302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses.
    Vu HTT; Gomez F; Cherelle P; Lefeber D; Nowé A; Vanderborght B
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30041421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.