These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 27690034)
41. Wideband Spectrum Sensing Based on Riemannian Distance for Cognitive Radio Networks. Lu Q; Yang S; Liu F Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28333119 [TBL] [Abstract][Full Text] [Related]
42. Sampling strategy for the sparse recovery of infrared images. Cakir S; Uzeler H; Aytaç T Appl Opt; 2013 Oct; 52(28):6858-67. PubMed ID: 24085199 [TBL] [Abstract][Full Text] [Related]
43. Full-Duplex Cooperative Sensing for Spectrum-Heterogeneous Cognitive Radio Networks. Liu P; Qi W; Yuan E; Wei L; Zhao Y Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767083 [TBL] [Abstract][Full Text] [Related]
44. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks. Qian X; Hao L; Ni D; Tran QT Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29415452 [TBL] [Abstract][Full Text] [Related]
45. Distributed sparse signal sensing based on compressive sensing OFDR. Qu S; Qin Z; Xu Y; Liu Z; Cong Z; Wang H; Li Z Opt Lett; 2020 Jun; 45(12):3288-3291. PubMed ID: 32538964 [TBL] [Abstract][Full Text] [Related]
47. Compressive sensing based maximum-minimum subband energy detection for cognitive radios. Dagne DT; Fante KA; Desta GA Heliyon; 2020 Sep; 6(9):e04906. PubMed ID: 32995610 [TBL] [Abstract][Full Text] [Related]
48. Goodness-of-fit based secure cooperative spectrum sensing for cognitive radio network. Vu-Van H; Koo I ScientificWorldJournal; 2014; 2014():752507. PubMed ID: 24959626 [TBL] [Abstract][Full Text] [Related]
49. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios. Tang ZL; Li SM; Yu LJ Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27294928 [TBL] [Abstract][Full Text] [Related]
50. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals. Zhang Z; Jung TP; Makeig S; Pi Z; Rao BD IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1186-97. PubMed ID: 24801887 [TBL] [Abstract][Full Text] [Related]
51. A measurement-domain adaptive beamforming approach for ultrasound instrument based on distributed compressed sensing: Initial development. Zhang Q; Li B; Shen M Ultrasonics; 2013 Jan; 53(1):255-64. PubMed ID: 22867991 [TBL] [Abstract][Full Text] [Related]
52. A rolling bearing fault detection method based on compressed sensing and a neural network. Lu L; Fei JY; Yu L; Yuan Y Math Biosci Eng; 2020 Sep; 17(5):5864-5882. PubMed ID: 33120580 [TBL] [Abstract][Full Text] [Related]
53. Decoupling and one-time elimination of the timing skew in a time-demultiplexing photonic analog-to-digital converter for high-resolution wideband signal acquisition. Qin R; Qian N; Zhou D; Ma B; Zou W Opt Lett; 2023 Oct; 48(20):5324-5327. PubMed ID: 37831858 [TBL] [Abstract][Full Text] [Related]
54. Multiband sparse signal reconstruction through direct one-bit sampling. Chen Y; Zhao Y; Huang J; Zheng Y Rev Sci Instrum; 2019 Aug; 90(8):084702. PubMed ID: 31472604 [TBL] [Abstract][Full Text] [Related]
55. Multiple-Antenna Cooperative Spectrum Sensing Based on the Wavelet Transform and Gaussian Mixture Model. Zhang S; Wang Y; Yuan H; Wan P; Zhang Y Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500200 [TBL] [Abstract][Full Text] [Related]
56. Resource-efficient fusion with pre-compensated transmissions for cooperative spectrum sensing. Guimarães DA; Aquino GP; Cattaneo ME Sensors (Basel); 2015 May; 15(5):10891-908. PubMed ID: 26007712 [TBL] [Abstract][Full Text] [Related]
57. Informational analysis for compressive sampling in radar imaging. Zhang J; Yang K Sensors (Basel); 2015 Mar; 15(4):7136-55. PubMed ID: 25811226 [TBL] [Abstract][Full Text] [Related]
58. Channelized broadband signal spectrum analysis based on weighted overlap-add structure. Guo L; Jiang J; Tan F; Pan H; Zhang P; Zeng H; Bai L Rev Sci Instrum; 2016 Oct; 87(10):105123. PubMed ID: 27802708 [TBL] [Abstract][Full Text] [Related]
59. Sub-Nyquist SAR Based on Pseudo-Random Time-Space Modulation. Chen W; Li C; Yu Z; Xiao P Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544853 [TBL] [Abstract][Full Text] [Related]
60. GHz sampling hardware implementation with sub-Nyquist coprime sampling rates. Wen W; Yan H; Zhao Y; Liu D; He H Rev Sci Instrum; 2019 Jul; 90(7):074706. PubMed ID: 31370498 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]