These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27690250)

  • 21. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature.
    Demmel F; Tani A
    Phys Rev E; 2018 Jun; 97(6-1):062124. PubMed ID: 30011507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revisiting the Stokes-Einstein relation without a hydrodynamic diameter.
    Costigliola L; Heyes DM; Schrøder TB; Dyre JC
    J Chem Phys; 2019 Jan; 150(2):021101. PubMed ID: 30646717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations among residual multiparticle entropy, local atomic-level pressure, free volume and the phase-ordering rule in several liquids.
    Cao QL; Wang WL; Li YD; Liu CS
    J Chem Phys; 2011 Jan; 134(4):044508. PubMed ID: 21280749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscous flow and jump dynamics in molecular supercooled liquids. I. Translations.
    De Michele C; Leporini D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036701. PubMed ID: 11308796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusivity anomaly in modified Stillinger-Weber liquids.
    Sengupta S; Vasisht VV; Sastry S
    J Chem Phys; 2014 Jan; 140(4):044503. PubMed ID: 25669551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid.
    Ngai KL
    J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency-dependent Stokes-Einstein relation in supercooled liquids.
    Zangi R; Kaufman LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051501. PubMed ID: 17677067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material.
    Wei S; Evenson Z; Stolpe M; Lucas P; Angell CA
    Sci Adv; 2018 Nov; 4(11):eaat8632. PubMed ID: 30515453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved model for the transit entropy of monatomic liquids.
    Wallace DC; Chisolm ED; Bock N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051201. PubMed ID: 19518441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of fractional Stokes-Einstein behavior in the simplest hydrogen-bonded liquid.
    Fernandez-Alonso F; Bermejo FJ; McLain SE; Turner JF; Molaison JJ; Herwig KW
    Phys Rev Lett; 2007 Feb; 98(7):077801. PubMed ID: 17359062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of methanol in ionic liquids: validity of the Stokes-Einstein and Stokes-Einstein-Debye relations.
    Herold E; Strauch M; Michalik D; Appelhagen A; Ludwig R
    Chemphyschem; 2014 Oct; 15(14):3040-8. PubMed ID: 25055972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spurious violation of the Stokes-Einstein-Debye relation in supercooled water.
    Kawasaki T; Kim K
    Sci Rep; 2019 May; 9(1):8118. PubMed ID: 31148561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translational dynamics of a rod-like probe in supercooled liquids: an experimentally realizable method to study Stokes-Einstein breakdown, dynamic heterogeneity, and amorphous order.
    Mutneja A; Karmakar S
    Soft Matter; 2021 Jun; 17(23):5738-5746. PubMed ID: 34018543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic diffusion in liquid gallium and gallium-nickel alloys probed by quasielastic neutron scattering and molecular dynamic simulations.
    Shahzad A; Yang F; Steffen J; Neiss C; Panchenko A; Goetz K; Vogel C; Weisser M; Embs JP; Petry W; Lohstroh W; Görling A; Goychuk I; Unruh T
    J Phys Condens Matter; 2024 Feb; 36(17):. PubMed ID: 38224622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excess Entropy Scaling Law for Diffusivity in Liquid Metals.
    Jakse N; Pasturel A
    Sci Rep; 2016 Feb; 6():20689. PubMed ID: 26862002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids.
    Pan S; Wu ZW; Wang WH; Li MZ; Xu L
    Sci Rep; 2017 Jan; 7():39938. PubMed ID: 28059111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-state properties of a one-component plasma.
    Daligault J
    Phys Rev Lett; 2006 Feb; 96(6):065003. PubMed ID: 16606003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt.
    Han XJ; Li JG; Schober HR
    J Chem Phys; 2016 Mar; 144(12):124505. PubMed ID: 27036459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perspective: Excess-entropy scaling.
    Dyre JC
    J Chem Phys; 2018 Dec; 149(21):210901. PubMed ID: 30525736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Stokes-Einstein relation for simple fluids: From hard-sphere to Lennard-Jones via WCA potentials.
    Ohtori N; Uchiyama H; Ishii Y
    J Chem Phys; 2018 Dec; 149(21):214501. PubMed ID: 30525734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.