These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27690277)

  • 41. Direct Catalytic Asymmetric Mannich-Type Reaction en Route to α-Hydroxy-β-amino Acid Derivatives.
    Sun B; Pluta R; Kumagai N; Shibasaki M
    Org Lett; 2018 Feb; 20(3):526-529. PubMed ID: 29332389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copper(I)-Fesulphos Lewis Acid catalysts for enantioselective Mannich-type reaction of N-sulfonyl imines.
    Gonzalez AS; Arrayas RG; Carretero JC
    Org Lett; 2006 Jul; 8(14):2977-80. PubMed ID: 16805531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bifunctional Brønsted Base Catalyzed Mannich Reaction of β-Alkoxy α-Keto Amides: Stereocontrolled Entry to Functionalized Amino Diols.
    Echave H; Bastida I; López R; Palomo C
    Chemistry; 2018 Aug; 24(45):11554-11558. PubMed ID: 29917275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sodium phenoxide-phosphine oxides as extremely active Lewis base catalysts for the Mukaiyama aldol reaction with ketones.
    Hatano M; Takagi E; Ishihara K
    Org Lett; 2007 Oct; 9(22):4527-30. PubMed ID: 17894505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atom-Efficient Synthesis of Alkynylfluoroborates Using BF
    Iashin V; Chernichenko K; Pápai I; Repo T
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):14146-14150. PubMed ID: 27709758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. (1R)-(+)-camphor and acetone derived alpha'-hydroxy enones in asymmetric Diels-Alder reaction: catalytic activation by Lewis and Brønsted acids, substrate scope, applications in syntheses, and mechanistic studies.
    Bañuelos P; García JM; Gómez-Bengoa E; Herrero A; Odriozola JM; Oiarbide M; Palomo C; Razkin J
    J Org Chem; 2010 Mar; 75(5):1458-73. PubMed ID: 20121243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis.
    Walden DM; Ogba OM; Johnston RC; Cheong PH
    Acc Chem Res; 2016 Jun; 49(6):1279-91. PubMed ID: 27267964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stability, Reactivity, Selectivity, Catalysis, and Predictions of 1,3,2,5-Diazadiborinine: Computational Insight into a Boron-Boron Frustrated Lewis Pair.
    Liu LL; Chan C; Zhu J; Cheng CH; Zhao Y
    J Org Chem; 2015 Sep; 80(17):8790-5. PubMed ID: 26247714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the mechanism of hydrogen activation by frustrated Lewis pairs.
    Zeonjuk LL; Vankova N; Mavrandonakis A; Heine T; Röschenthaler GV; Eicher J
    Chemistry; 2013 Dec; 19(51):17413-24. PubMed ID: 24318267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Palladium-catalyzed alpha-arylation of carbonyl compounds and nitriles.
    Culkin DA; Hartwig JF
    Acc Chem Res; 2003 Apr; 36(4):234-45. PubMed ID: 12693921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enantioselective α-Allylation of Acyclic Esters Using B(pin)-Substituted Electrophiles: Independent Regulation of Stereocontrol Elements through Cooperative Pd/Lewis Base Catalysis.
    Scaggs WR; Snaddon TN
    Chemistry; 2018 Sep; 24(54):14378-14381. PubMed ID: 30011357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct catalytic asymmetric mannich reactions of malonates and beta-keto esters.
    Marigo M; Kjaersgaard A; Juhl K; Gathergood N; Jørgensen KA
    Chemistry; 2003 May; 9(10):2359-67. PubMed ID: 12772311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WO
    Zhao X; Wang J; Yang M; Lei N; Li L; Hou B; Miao S; Pan X; Wang A; Zhang T
    ChemSusChem; 2017 Mar; 10(5):819-824. PubMed ID: 27863052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auto-Tandem Catalysis with Frustrated Lewis Pairs for Reductive Etherification of Aldehydes and Ketones.
    Bakos M; Gyömöre Á; Domján A; Soós T
    Angew Chem Int Ed Engl; 2017 May; 56(19):5217-5221. PubMed ID: 28378401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of acid-base catalysis for the asymmetric direct Aldol reaction.
    Saito S; Yamamoto H
    Acc Chem Res; 2004 Aug; 37(8):570-9. PubMed ID: 15311956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities.
    Kondoh A; Oishi M; Tezuka H; Terada M
    Angew Chem Int Ed Engl; 2020 May; 59(19):7472-7477. PubMed ID: 32057170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3-Pyrrolidinecarboxylic acid for direct catalytic asymmetric anti-Mannich-type reactions of unmodified ketones.
    Zhang H; Mifsud M; Tanaka F; Barbas CF
    J Am Chem Soc; 2006 Aug; 128(30):9630-1. PubMed ID: 16866507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation.
    Uraguchi D; Terada M
    J Am Chem Soc; 2004 May; 126(17):5356-7. PubMed ID: 15113196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence that protons can be the active catalysts in Lewis acid mediated hetero-Michael addition reactions.
    Wabnitz TC; Yu JQ; Spencer JB
    Chemistry; 2004 Jan; 10(2):484-93. PubMed ID: 14735517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reactivity-Tuning in Frustrated Lewis Pairs: Nucleophilicity and Lewis Basicity of Sterically Hindered Phosphines.
    Follet E; Mayer P; Stephenson DS; Ofial AR; Berionni G
    Chemistry; 2017 Jun; 23(31):7422-7427. PubMed ID: 28370848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.