These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27690304)
1. How exactly can computer simulation predict the kinematics and contact status after TKA? Examination in individualized models. Tanaka Y; Nakamura S; Kuriyama S; Ito H; Furu M; Komistek RD; Matsuda S Clin Biomech (Bristol); 2016 Nov; 39():65-70. PubMed ID: 27690304 [TBL] [Abstract][Full Text] [Related]
2. In vivo femoro-tibial kinematic analysis of a tri-condylar total knee prosthesis. Nakamura S; Sharma A; Ito H; Nakamura K; Komistek RD Clin Biomech (Bristol); 2014 Apr; 29(4):400-5. PubMed ID: 24636308 [TBL] [Abstract][Full Text] [Related]
3. In vivo kinematics of a newly updated posterior-stabilised mobile-bearing total knee arthroplasty in weight-bearing and non-weight-bearing high-flexion activities. Kage T; Inui H; Tomita T; Yamazaki T; Taketomi S; Yamagami R; Kono K; Kawaguchi K; Sameshima S; Tanaka S Knee; 2021 Mar; 29():183-189. PubMed ID: 33640617 [TBL] [Abstract][Full Text] [Related]
4. Single Versus Multiple-Radii Cruciate-Retaining Total Knee Arthroplasty: An In Vivo Mobile Fluoroscopy Study. Grieco TF; Sharma A; Komistek RD; Cates HE J Arthroplasty; 2016 Mar; 31(3):694-701. PubMed ID: 26614750 [TBL] [Abstract][Full Text] [Related]
5. 3D in vivo femoro-tibial kinematics of tri-condylar total knee arthroplasty during kneeling activities. Nakamura S; Sharma A; Kobayashi M; Ito H; Nakamura K; Zingde SM; Nakamura T; Komistek RD Knee; 2014 Jan; 21(1):162-7. PubMed ID: 24055271 [TBL] [Abstract][Full Text] [Related]
6. In vivo kinematic effects of ball and socket third condyle as a post-cam mechanism in tri-condylar knee implants. Nakamura S; Sharma A; Nakamura K; Ikeda N; Kawai J; Zingde SM; Komistek RD Knee; 2015 Jun; 22(3):237-42. PubMed ID: 25835265 [TBL] [Abstract][Full Text] [Related]
7. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: In-vivo surgical transepicondylar axis and geometric center axis analyses. Dimitriou D; Tsai TY; Park KK; Hosseini A; Kwon YM; Rubash HE; Li G J Biomech; 2016 Jun; 49(9):1891-1898. PubMed ID: 27166758 [TBL] [Abstract][Full Text] [Related]
8. In vivo kinematics of a low contact stress rotating platform total knee arthroplasty system under weight bearing and non-weight bearing condition. Matsumoto K; Iwamoto K; Mori N; Yamasaki T; Ito Y; Takigami I; Terabayashi N; Ogawa H; Tomita T; Akiyama H J Orthop Sci; 2014 Sep; 19(5):750-5. PubMed ID: 24996622 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Flexion Gap on In Vivo Knee Kinematics Using Fluoroscopy. Nakamura S; Ito H; Yoshitomi H; Kuriyama S; Komistek RD; Matsuda S J Arthroplasty; 2015 Jul; 30(7):1237-42. PubMed ID: 25680453 [TBL] [Abstract][Full Text] [Related]
10. Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Banks SA; Fregly BJ; Boniforti F; Reinschmidt C; Romagnoli S Knee Surg Sports Traumatol Arthrosc; 2005 Oct; 13(7):551-6. PubMed ID: 15660274 [TBL] [Abstract][Full Text] [Related]
11. Detrimental kinematics of a flat on flat total condylar knee arthroplasty. Stiehl JB; Komistek RD; Dennis DA Clin Orthop Relat Res; 1999 Aug; (365):139-48. PubMed ID: 10627698 [TBL] [Abstract][Full Text] [Related]
12. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Steinbrück A; Schröder C; Woiczinski M; Fottner A; Pinskerova V; Müller PE; Jansson V Clin Biomech (Bristol); 2016 Mar; 33():42-48. PubMed ID: 26945720 [TBL] [Abstract][Full Text] [Related]
13. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty. Watanabe T; Muneta T; Sekiya I; Banks SA Knee; 2015 Dec; 22(6):527-34. PubMed ID: 26014342 [TBL] [Abstract][Full Text] [Related]
14. Customized versus Patient-Sized Cruciate-Retaining Total Knee Arthroplasty: An In Vivo Kinematics Study Using Mobile Fluoroscopy. Zeller IM; Sharma A; Kurtz WB; Anderle MR; Komistek RD J Arthroplasty; 2017 Apr; 32(4):1344-1350. PubMed ID: 27814916 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. Li G; Suggs J; Hanson G; Durbhakula S; Johnson T; Freiberg A J Bone Joint Surg Am; 2006 Feb; 88(2):395-402. PubMed ID: 16452753 [TBL] [Abstract][Full Text] [Related]
16. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Shimmin A; Martinez-Martos S; Owens J; Iorgulescu AD; Banks S Knee; 2015 Dec; 22(6):522-6. PubMed ID: 25999125 [TBL] [Abstract][Full Text] [Related]
17. Comparison of in vivo patellofemoral kinematics for subjects having high-flexion total knee arthroplasty implant with patients having normal knees. Leszko F; Sharma A; Komistek RD; Mahfouz MR; Cates HE; Scuderi GR J Arthroplasty; 2010 Apr; 25(3):398-404. PubMed ID: 19232891 [TBL] [Abstract][Full Text] [Related]
18. Varus alignment after total knee arthroplasty results in greater axial rotation during deep knee bend activity. Sekiguchi K; Nakamura S; Nakamura K; Ito H; Kuriyama S; Nishitani K; Komistek RD; Matsuda S Clin Biomech (Bristol); 2020 Jul; 77():105051. PubMed ID: 32464429 [TBL] [Abstract][Full Text] [Related]
19. In vivo kinematics of knee replacement during daily living activities: Condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. Belvedere C; Leardini A; Catani F; Pianigiani S; Innocenti B J Orthop Res; 2017 Jul; 35(7):1396-1403. PubMed ID: 27572247 [TBL] [Abstract][Full Text] [Related]
20. Multicenter determination of in vivo kinematics after total knee arthroplasty. Dennis DA; Komistek RD; Mahfouz MR; Haas BD; Stiehl JB Clin Orthop Relat Res; 2003 Nov; (416):37-57. PubMed ID: 14646738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]