These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 27690335)

  • 21. Interlaced Pd-Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis.
    Liu XJ; Yin X; Sun YD; Yu FJ; Gao XW; Fu LJ; Wu YP; Chen YH
    Nanoscale; 2020 Mar; 12(9):5368-5373. PubMed ID: 32100815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional Ultrathin PdxCu(1-x) and Pt∼PdxCu(1-x) One-Dimensional Nanowire Motifs for Various Small Molecule Oxidation Reactions.
    Liu H; Adzic RR; Wong SS
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26145-57. PubMed ID: 26580482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tiny Ir doping of sub-one-nanometer PtMn nanowires: highly active and stable catalysts for alcohol electrooxidation.
    Gao F; Zhang Y; Ren F; Song T; Du Y
    Nanoscale; 2020 Jun; 12(22):12098-12105. PubMed ID: 32478767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous Pt Nanotubes with High Methanol Oxidation Electrocatalytic Activity Based on Original Bamboo-Shaped Te Nanotubes.
    Lou Y; Li C; Gao X; Bai T; Chen C; Huang H; Liang C; Shi Z; Feng S
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16147-53. PubMed ID: 27310183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior Ethanol Oxidation Electrocatalysis Enabled by Ternary Pd-Rh-Te Nanotubes.
    Jin L; Xu H; Chen C; Shang H; Wang Y; Du Y
    Inorg Chem; 2019 Sep; 58(18):12377-12384. PubMed ID: 31478657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stable High-Index Faceted Pt Skin on Zigzag-Like PtFe Nanowires Enhances Oxygen Reduction Catalysis.
    Luo M; Sun Y; Zhang X; Qin Y; Li M; Li Y; Li C; Yang Y; Wang L; Gao P; Lu G; Guo S
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29333666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis.
    Tao L; Xia Z; Zhang Q; Sun Y; Li M; Yin K; Gu L; Guo S
    Sci Bull (Beijing); 2021 Jan; 66(1):44-51. PubMed ID: 36654312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts.
    Jiang K; Wang P; Guo S; Zhang X; Shen X; Lu G; Su D; Huang X
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):9030-5. PubMed ID: 27253520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials.
    Zhou M; Wang HL; Guo S
    Chem Soc Rev; 2016 Mar; 45(5):1273-307. PubMed ID: 26647087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation.
    Zhang J; Guo S; Wei J; Xu Q; Yan W; Fu J; Wang S; Cao M; Chen Z
    Chemistry; 2013 Nov; 19(47):16087-92. PubMed ID: 24123196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction.
    Zhang C; Xu L; Yan Y; Chen J
    Sci Rep; 2016 Aug; 6():31440. PubMed ID: 27550737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications.
    Cui CH; Yu SH
    Acc Chem Res; 2013 Jul; 46(7):1427-37. PubMed ID: 23425040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes.
    Zhao X; Sasaki K
    Acc Chem Res; 2022 May; 55(9):1226-1236. PubMed ID: 35451817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction.
    Koenigsmann C; Semple DB; Sutter E; Tobierre SE; Wong SS
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5518-30. PubMed ID: 23742154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Pt-Co Nanoframes for Fuel-Cell Electrocatalysis.
    Chen S; Li M; Gao M; Jin J; van Spronsen MA; Salmeron MB; Yang P
    Nano Lett; 2020 Mar; 20(3):1974-1979. PubMed ID: 32048513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis.
    Sun Y; Li Y; Qin Y; Wang L; Guo S
    Chemistry; 2020 Mar; 26(18):4032-4038. PubMed ID: 31769895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical Surface Grafting of Pt Nanocatalysts for Reconciling Methanol Tolerance with Methanol Oxidation Activity.
    Lenne Q; Mattiuzzi A; Jabin I; Troian-Gautier L; Hamon J; Leroux YR; Lagrost C
    ChemSusChem; 2023 Apr; 16(8):e202201990. PubMed ID: 36752278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. T porous PtIr bimetallic nanotubes with core shell structure for enhanced electrocatalysis on methanol oxidation.
    Zhang T; Pan J; Yuan J; Fang K; Niu L
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34038886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.