These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 27690347)

  • 1. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.
    Woehl TJ; White RM; Keller RR
    Microsc Microanal; 2016 Jun; 22(3):544-50. PubMed ID: 27153003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections.
    Sousa AA; Hohmann-Marriott MF; Zhang G; Leapman RD
    Ultramicroscopy; 2009 Feb; 109(3):213-21. PubMed ID: 19110374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low voltage STEM imaging of multi-walled carbon nanotubes.
    Beyer Y; Beanland R; Midgley PA
    Micron; 2012 Feb; 43(2-3):428-34. PubMed ID: 22133973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative annular dark-field imaging of single-layer graphene.
    Yamashita S; Koshiya S; Ishizuka K; Kimoto K
    Microscopy (Oxf); 2015 Apr; 64(2):143-50. PubMed ID: 25637649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid measurement of nanoparticle thickness profiles.
    Katz-Boon H; Rossouw CJ; Dwyer C; Etheridge J
    Ultramicroscopy; 2013 Jan; 124():61-70. PubMed ID: 23142746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials.
    Gnanasekaran K; de With G; Friedrich H
    R Soc Open Sci; 2018 May; 5(5):171838. PubMed ID: 29892376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal experiment design for element specific atom counting using multiple annular dark field scanning transmission electron microscopy detectors.
    Sentürk DG; De Backer A; Friedrich T; Van Aert S
    Ultramicroscopy; 2022 Dec; 242():113626. PubMed ID: 36228399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattering intensity distribution dependence on collection angles in annular dark-field STEM-in-SEM images.
    Holm J
    Ultramicroscopy; 2018 Dec; 195():12-20. PubMed ID: 30172856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating STEM imaging of nanoparticles in micrometers-thick substrates.
    Demers H; Poirier-Demers N; Drouin D; de Jonge N
    Microsc Microanal; 2010 Dec; 16(6):795-804. PubMed ID: 20961483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angularly-selective transmission imaging in a scanning electron microscope.
    Holm J; Keller RR
    Ultramicroscopy; 2016 Aug; 167():43-56. PubMed ID: 27179301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the contrast in experimental high-angle annular dark-field images.
    Klenov DO; Stemmer S
    Ultramicroscopy; 2006; 106(10):889-901. PubMed ID: 16713091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.
    Lebeau JM; Stemmer S
    Ultramicroscopy; 2008 Nov; 108(12):1653-8. PubMed ID: 18707809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens.
    Rez P; Larsen T; Elbaum M
    J Struct Biol; 2016 Dec; 196(3):466-478. PubMed ID: 27678408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-field imaging of thin specimens with a forescatter electron detector at low accelerating voltage.
    Brodusch N; Demers H; Gauvin R
    Microsc Microanal; 2013 Dec; 19(6):1688-97. PubMed ID: 23981287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning transmission helium ion microscopy on carbon nanomembranes.
    Emmrich D; Wolff A; Meyerbröker N; Lindner JKN; Beyer A; Gölzhäuser A
    Beilstein J Nanotechnol; 2021; 12():222-231. PubMed ID: 33728240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.
    Patel B; Watanabe M
    Microsc Microanal; 2014 Feb; 20(1):124-32. PubMed ID: 24423133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.
    Tate MW; Purohit P; Chamberlain D; Nguyen KX; Hovden R; Chang CS; Deb P; Turgut E; Heron JT; Schlom DG; Ralph DC; Fuchs GD; Shanks KS; Philipp HT; Muller DA; Gruner SM
    Microsc Microanal; 2016 Feb; 22(1):237-49. PubMed ID: 26750260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions.
    Zhang Z; Lobato I; De Backer A; Van Aert S; Nellist P
    Ultramicroscopy; 2023 Apr; 246():113671. PubMed ID: 36621195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.