These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27690386)

  • 21. Suppressed Magnitude of Spectral Diffusion in Cube-Shaped CdSe/CdS Core/Shell Nanocrystals with Exceedingly Stable Photoluminescence.
    Ye Y; Liu S; Lei H; Lv L; Qin H; Fang W; Peng X
    Nano Lett; 2024 Mar; 24(9):2712-2718. PubMed ID: 38407061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots.
    Shen Y; Tan R; Gee MY; Greytak AB
    ACS Nano; 2015 Mar; 9(3):3345-59. PubMed ID: 25753127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.
    Zhou J; Zhu M; Meng R; Qin H; Peng X
    J Am Chem Soc; 2017 Nov; 139(46):16556-16567. PubMed ID: 29094943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy.
    Zhimin Yuan ; Wang J; Yang P
    Luminescence; 2013; 28(2):169-75. PubMed ID: 22511616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions.
    Delikanli S; Akgul MZ; Murphy JR; Barman B; Tsai Y; Scrace T; Zhang P; Bozok B; Hernández-Martínez PL; Christodoulides J; Cartwright AN; Petrou A; Demir HV
    ACS Nano; 2015 Dec; 9(12):12473-9. PubMed ID: 26567872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shell-dependent blinking behavior and fluorescence dynamics of single ZnSe/CdS core/shell quantum dots.
    Guo X; Kuang Y; Wang S; Li Z; Shen H; Guo L
    Nanoscale; 2018 Oct; 10(39):18696-18705. PubMed ID: 30270388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals.
    Pinchetti V; Meinardi F; Camellini A; Sirigu G; Christodoulou S; Bae WK; De Donato F; Manna L; Zavelani-Rossi M; Moreels I; Klimov VI; Brovelli S
    ACS Nano; 2016 Jul; 10(7):6877-87. PubMed ID: 27276033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the role of holes in blinking: negative and oxidized CdSe/CdS dots.
    Qin W; Guyot-Sionnest P
    ACS Nano; 2012 Oct; 6(10):9125-32. PubMed ID: 23006012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of Spherical Quantum Well Down Converters in Solid State Lighting.
    Rreza I; Yang H; Hamachi L; Campos M; Hull T; Treadway J; Kurtin J; Chan EM; Owen JS
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12191-12197. PubMed ID: 33682411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots.
    Yuan X; Zheng J; Zeng R; Jing P; Ji W; Zhao J; Yang W; Li H
    Nanoscale; 2014 Jan; 6(1):300-7. PubMed ID: 24192996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverting Asymmetric Confinement Potentials in Core/Thick-Shell Nanocrystals.
    Paulite M; Acharya KP; Nguyen HM; Hollingsworth JA; Htoon H
    J Phys Chem Lett; 2015 Feb; 6(4):706-11. PubMed ID: 26262490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-Stable and Highly Luminescent CsPbI
    Paul S; Samanta A
    J Phys Chem Lett; 2022 Jun; 13(25):5742-5750. PubMed ID: 35713649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lattice Strain Limit for Uniform Shell Deposition in Zincblende CdSe/CdS Quantum Dots.
    Gong K; Kelley DF
    J Phys Chem Lett; 2015 May; 6(9):1559-62. PubMed ID: 26263313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment.
    Pu C; Peng X
    J Am Chem Soc; 2016 Jul; 138(26):8134-42. PubMed ID: 27312799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-Emitting Dot-in-Bulk CdSe/CdS Nanocrystals with Highly Emissive Core- and Shell-Based Trions Sharing the Same Resident Electron.
    Pinchetti V; Shornikova EV; Qiang G; Bae WK; Meinardi F; Crooker SA; Yakovlev DR; Bayer M; Klimov VI; Brovelli S
    Nano Lett; 2019 Dec; 19(12):8846-8854. PubMed ID: 31651177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness.
    van Embden J; Jasieniak J; Mulvaney P
    J Am Chem Soc; 2009 Oct; 131(40):14299-309. PubMed ID: 19754114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical properties of fully inorganic core/gradient-shell CdSe/CdZnS nanocrystals at the ensemble and single-nanocrystal levels.
    Baronnier J; Mahler B; Boisron O; Dujardin C; Kulzer F; Houel J
    Phys Chem Chem Phys; 2021 Oct; 23(39):22750-22759. PubMed ID: 34608907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability.
    Krishnamurthy S; Singh A; Hu Z; Blake AV; Kim Y; Singh A; Dolgopolova EA; Williams DJ; Piryatinski A; Malko AV; Htoon H; Sykora M; Hollingsworth JA
    ACS Nano; 2021 Jan; 15(1):575-587. PubMed ID: 33381968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots.
    Dong L; Sugunan A; Hu J; Zhou S; Li S; Popov S; Toprak MS; Friberg AT; Muhammed M
    Appl Opt; 2013 Jan; 52(1):105-9. PubMed ID: 23292381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.