These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27690409)

  • 21. Interfacial Coupling Effect on Electron Transport in Hierarchical TaON/Au/ZnCo-LDH Photoanode with Enhanced Photoelectrochemical Water Oxidation.
    Wang H; Xia Y; Wang X; Han Y; Jiao X; Chen D
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33062-33073. PubMed ID: 31419108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A visible-light harvesting system for CO2 reduction using a Ru(II) -Re(I) photocatalyst adsorbed in mesoporous organosilica.
    Ueda Y; Takeda H; Yui T; Koike K; Goto Y; Inagaki S; Ishitani O
    ChemSusChem; 2015 Feb; 8(3):439-42. PubMed ID: 25524162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO
    DuChene JS; Tagliabue G; Welch AJ; Li X; Cheng WH; Atwater HA
    Nano Lett; 2020 Apr; 20(4):2348-2358. PubMed ID: 32134672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor.
    Wang GL; Liu KL; Dong YM; Wu XM; Li ZJ; Zhang C
    Biosens Bioelectron; 2014 Dec; 62():66-72. PubMed ID: 24984285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective CO Production by Photoelectrochemical CO
    Wang Y; Zhu Y; Sun L; Li F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41644-41648. PubMed ID: 32820886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured TaON/Ta
    Pei L; Wang H; Wang X; Xu Z; Yan S; Zou Z
    Dalton Trans; 2018 Jul; 47(27):8949-8955. PubMed ID: 29922786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II.
    Lai YH; Kato M; Mersch D; Reisner E
    Faraday Discuss; 2014; 176():199-211. PubMed ID: 25434986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water.
    Dong Y; Chen Y; Jiang P; Wang G; Wu X; Wu R; Zhang C
    Chem Asian J; 2015 Aug; 10(8):1660-7. PubMed ID: 26011705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO
    Jung JY; Yu JY; Lee JH
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7955-7962. PubMed ID: 29411607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts.
    Sato S; Arai T; Morikawa T; Uemura K; Suzuki TM; Tanaka H; Kajino T
    J Am Chem Soc; 2011 Oct; 133(39):15240-3. PubMed ID: 21899327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Z-Schematic and visible-light-driven CO
    Suzuki TM; Yoshino S; Takayama T; Iwase A; Kudo A; Morikawa T
    Chem Commun (Camb); 2018 Sep; 54(72):10199-10202. PubMed ID: 30137068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation.
    Higashi M; Domen K; Abe R
    J Am Chem Soc; 2012 Apr; 134(16):6968-71. PubMed ID: 22489629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gallium Phosphide photoanode coated with TiO
    Alqahtani M; Ben-Jabar S; Ebaid M; Sathasivam S; Jurczak P; Xia X; Alromaeh A; Blackman C; Qin Y; Zhang B; Ooi BS; Liu H; Parkin IP; Wu J
    Opt Express; 2019 Apr; 27(8):A364-A371. PubMed ID: 31052888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous Photoelectrochemical CO
    Shang B; Rooney CL; Gallagher DJ; Wang BT; Krayev A; Shema H; Leitner O; Harmon NJ; Xiao L; Sheehan C; Bottum SR; Gross E; Cahoon JF; Mallouk TE; Wang H
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215213. PubMed ID: 36445830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.
    Li TT; Zhao WL; Chen Y; Li FM; Wang CJ; Tian YH; Fu WF
    Chemistry; 2014 Oct; 20(43):13957-64. PubMed ID: 25205065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bipolar Energetics and Bifunctional Catalytic Activity of a Nanocrystalline Ru Thin-Film Enable High-Performance Photoelectrochemical Water Reduction and Oxidation.
    Jung JY; Kim DW; Shinde SS; Kim SH; Kim DH; Lin C; Park TJ; Lee JH
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16402-16410. PubMed ID: 32183516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cu
    Ikeda S; Aono N; Iwase A; Kobayashi H; Kudo A
    ChemSusChem; 2019 May; 12(9):1977-1983. PubMed ID: 30666792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer.
    Arai T; Tajima S; Sato S; Uemura K; Morikawa T; Kajino T
    Chem Commun (Camb); 2011 Dec; 47(47):12664-6. PubMed ID: 22042496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemical reduction of CO2 with ascorbate in aqueous solution using vesicles acting as photocatalysts.
    Ikuta N; Takizawa SY; Murata S
    Photochem Photobiol Sci; 2014 Apr; 13(4):691-702. PubMed ID: 24549095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.