These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27690437)

  • 1. Dynamic Behavior of Secondary Electrons in Liquid Water at the Earliest Stage upon Irradiation: Implications for DNA Damage Localization Mechanism.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    J Phys Chem A; 2016 Oct; 120(42):8228-8233. PubMed ID: 27690437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    Int J Radiat Biol; 2016 Nov; 92(11):654-659. PubMed ID: 27332896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A significant role of non-thermal equilibrated electrons in the formation of deleterious complex DNA damage.
    Kai T; Yokoya A; Ukai M; Fujii K; Toigawa T; Watanabe R
    Phys Chem Chem Phys; 2018 Jan; 20(4):2838-2844. PubMed ID: 29327017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inelastic electron interaction (attachment/ionization) with deoxyribose.
    Ptasińska S; Denifl S; Scheier P; Märk TD
    J Chem Phys; 2004 May; 120(18):8505-11. PubMed ID: 15267776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay.
    Hergenhahn U
    Int J Radiat Biol; 2012 Dec; 88(12):871-83. PubMed ID: 22640828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MO-F-BRB-06: Gold Nanoparticle Modify Density of Ionizations inside Cells Submitted to Radiation Therapy: Microscopic Track Analysis of Secondary Electrons Using Monte Carlo.
    Marques T; Schwarcke M; Nicolucci P
    Med Phys; 2012 Jun; 39(6Part21):3874. PubMed ID: 28518263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
    Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S
    Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron track simulation using ETMICRO.
    Kim EH
    Radiat Prot Dosimetry; 2006; 122(1-4):53-5. PubMed ID: 17182606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Track-average LET of secondary electrons generated in LiF:Mg,Ti and liquid water by 20-300 kV x-ray,
    Cabrera-Santiago A; Massillon-Jl G
    Phys Med Biol; 2016 Nov; 61(22):7919-7933. PubMed ID: 27779122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Uehara S; Nikjoo H; Goodhead DT
    Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.
    Bäckström G; Galassi ME; Tilly N; Ahnesjö A; Fernández-Varea JM
    Med Phys; 2013 Jun; 40(6):064101. PubMed ID: 23718619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations (and merits) of PENELOPE as a track-structure code.
    Fernández-Varea JM; González-Muñoz G; Galassi ME; Wiklund K; Lind BK; Ahnesjö A; Tilly N
    Int J Radiat Biol; 2012 Jan; 88(1-2):66-70. PubMed ID: 21864015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G; Pater P; Enger SA
    Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided stochastic modeling of the radiolysis of liquid water.
    Michalik V; Begusová M; Bigildeev EA
    Radiat Res; 1998 Mar; 149(3):224-36. PubMed ID: 9496885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdosimetry of low-energy electrons.
    Liamsuwan T; Emfietzoglou D; Uehara S; Nikjoo H
    Int J Radiat Biol; 2012 Dec; 88(12):899-907. PubMed ID: 22668077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.
    Li J; Li C; Qiu R; Yan C; Xie W; Wu Z; Zeng Z; Tung C
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):38-43. PubMed ID: 25883312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the passage of fast electrons and the early stage of water radiolysis by the Monte Carlo method.
    Kaplan IG; Sukhonosov VYa
    Radiat Res; 1991 Jul; 127(1):1-10. PubMed ID: 2068265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.
    Champion C; Le Loirec C
    Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.