BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 27690448)

  • 1. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels.
    VanSchouwen B; Melacini G
    J Phys Chem B; 2016 Oct; 120(42):10936-10950. PubMed ID: 27690448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels.
    VanSchouwen B; Akimoto M; Sayadi M; Fogolari F; Melacini G
    J Biol Chem; 2015 Jul; 290(29):17642-17654. PubMed ID: 25944904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Dimers in the cAMP-Dependent Activation of Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels.
    VanSchouwen B; Melacini G
    J Phys Chem B; 2018 Mar; 122(8):2177-2190. PubMed ID: 29461059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP.
    Akimoto M; Zhang Z; Boulton S; Selvaratnam R; VanSchouwen B; Gloyd M; Accili EA; Lange OF; Melacini G
    J Biol Chem; 2014 Aug; 289(32):22205-20. PubMed ID: 24878962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR.
    Boulton S; Akimoto M; VanSchouwen B; Moleschi K; Selvaratnam R; Giri R; Melacini G
    Biochem Soc Trans; 2014 Apr; 42(2):302-7. PubMed ID: 24646235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
    Kesters D; Brams M; Nys M; Wijckmans E; Spurny R; Voets T; Tytgat J; Kusch J; Ulens C
    PLoS One; 2015; 10(1):e0116369. PubMed ID: 25625648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides.
    VanSchouwen B; Melacini G
    Handb Exp Pharmacol; 2017; 238():123-133. PubMed ID: 28181007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping ligand interactions with the hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel binding domain using a soluble construct.
    Scott SP; Shea PW; Dryer SE
    Biochemistry; 2007 Aug; 46(33):9417-31. PubMed ID: 17655202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of cAMP modulation of HCN pacemaker channels.
    Wainger BJ; DeGennaro M; Santoro B; Siegelbaum SA; Tibbs GR
    Nature; 2001 Jun; 411(6839):805-10. PubMed ID: 11459060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels.
    Möller S; Alfieri A; Bertinetti D; Aquila M; Schwede F; Lolicato M; Rehmann H; Moroni A; Herberg FW
    ACS Chem Biol; 2014 May; 9(5):1128-37. PubMed ID: 24605759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.
    Selvaratnam R; Mazhab-Jafari MT; Das R; Melacini G
    PLoS One; 2012; 7(11):e48707. PubMed ID: 23185272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.
    Börger C; Schünke S; Lecher J; Stoldt M; Winkhaus F; Kaupp UB; Willbold D
    Biomol NMR Assign; 2015 Oct; 9(2):243-6. PubMed ID: 25324217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.
    Berrera M; Pantano S; Carloni P
    Biophys J; 2006 May; 90(10):3428-33. PubMed ID: 16500960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurophysiology of HCN channels: from cellular functions to multiple regulations.
    He C; Chen F; Li B; Hu Z
    Prog Neurobiol; 2014 Jan; 112():1-23. PubMed ID: 24184323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the Human HCN1 Hyperpolarization-Activated Channel.
    Lee CH; MacKinnon R
    Cell; 2017 Jan; 168(1-2):111-120.e11. PubMed ID: 28086084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A homology model of the pore region of HCN channels.
    Giorgetti A; Carloni P; Mistrik P; Torre V
    Biophys J; 2005 Aug; 89(2):932-44. PubMed ID: 15951376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance.
    Hayoz S; Tiwari PB; Piszczek G; Üren A; Brelidze TI
    PLoS One; 2017; 12(9):e0185359. PubMed ID: 28950029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels.
    Flynn GE; Zagotta WN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E8086-E8095. PubMed ID: 30076228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα.
    Akimoto M; McNicholl ET; Ramkissoon A; Moleschi K; Taylor SS; Melacini G
    PLoS Biol; 2015; 13(11):e1002305. PubMed ID: 26618408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.