These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 27690612)

  • 1. Actin-Mediated Retrograde Flow in Sea Urchin Coelomocytes: Conversion From a Lamellipodial-Dominated to a Filopodial-Dominated Form.
    Fried CA; Reina M; Henson JH
    Biol Bull; 2004 Oct; 207(2):161. PubMed ID: 27690612
    [No Abstract]   [Full Text] [Related]  

  • 2. Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process.
    Henson JH; Yeterian M; Weeks RM; Medrano AE; Brown BL; Geist HL; Pais MD; Oldenbourg R; Shuster CB
    Mol Biol Cell; 2015 Mar; 26(5):887-900. PubMed ID: 25568343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea urchin coelomocyte arylsulfatase: a modulator of the echinoderm clotting pathway.
    D'Andrea-Winslow L; Radke DW; Utecht T; Kaneko T; Akasaka K
    Integr Zool; 2012 Mar; 7(1):61-73. PubMed ID: 22405449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea urchin coelomocytes are resistant to a variety of DNA damaging agents.
    Loram J; Raudonis R; Chapman J; Lortie M; Bodnar A
    Aquat Toxicol; 2012 Nov; 124-125():133-8. PubMed ID: 22948035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons.
    Welnhofer EA; Zhao L; Cohan CS
    Cell Motil Cytoskeleton; 1997; 37(1):54-71. PubMed ID: 9142439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the monosaccharides of the sea urchin (Paracentrotus lividus) coelomocytes via the CapLC-ESI-MS/MS system and the lectin histochemistry.
    Şener E; Deveci R
    Fish Shellfish Immunol; 2015 Jan; 42(1):34-40. PubMed ID: 25449704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures.
    Kleitman N; Johnson MI
    Cell Motil Cytoskeleton; 1989; 13(4):288-300. PubMed ID: 2776225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules.
    Krendel M; Sgourdas G; Bonder EM
    Cell Motil Cytoskeleton; 1998; 40(4):368-78. PubMed ID: 9712266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures.
    Matranga V; Bonaventura R; Di Bella G
    Cell Mol Biol (Noisy-le-grand); 2002 Jun; 48(4):345-9. PubMed ID: 12064441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy.
    Pinsino A; Della Torre C; Sammarini V; Bonaventura R; Amato E; Matranga V
    Cell Biol Toxicol; 2008 Dec; 24(6):541-52. PubMed ID: 18228151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end.
    Mejillano MR; Kojima S; Applewhite DA; Gertler FB; Svitkina TM; Borisy GG
    Cell; 2004 Aug; 118(3):363-73. PubMed ID: 15294161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of vitellogenin in a subpopulation of sea urchin coelomocytes.
    Cervello M; Arizza V; Lattuca G; Parrinello N; Matranga V
    Eur J Cell Biol; 1994 Aug; 64(2):314-9. PubMed ID: 7813518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.
    Romero A; Novoa B; Figueras A
    Dev Comp Immunol; 2016 Sep; 62():29-38. PubMed ID: 27113124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.
    Sirotkin V; Seipel S; Krendel M; Bonder EM
    Mol Reprod Dev; 2000 Oct; 57(2):111-26. PubMed ID: 10984411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An updated look at actin dynamics in filopodia.
    Leijnse N; Oddershede LB; Bendix PM
    Cytoskeleton (Hoboken); 2015 Feb; 72(2):71-9. PubMed ID: 25786787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants.
    Reinardy HC; Bodnar AG
    Mutagenesis; 2015 Nov; 30(6):829-39. PubMed ID: 26175033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wound closure in the lamellipodia of single cells: mediation by actin polymerization in the absence of an actomyosin purse string.
    Henson JH; Nazarian R; Schulberg KL; Trabosh VA; Kolnik SE; Burns AR; McPartland KJ
    Mol Biol Cell; 2002 Mar; 13(3):1001-14. PubMed ID: 11907278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth dynamics. Quantitative models for nerve development and regeneration.
    Buettner HM
    Ann N Y Acad Sci; 1994 Nov; 745():210-21. PubMed ID: 7832510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription of similar sets of rare maternal RNAs and rare nuclear RNAs in sea urchin blastulae and adult coelomocytes.
    Kleene KC; Humphreys T
    J Embryol Exp Morphol; 1985 Feb; 85():131-49. PubMed ID: 2580928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral-bearing vesicle transport in sea urchin embryos.
    Vidavsky N; Masic A; Schertel A; Weiner S; Addadi L
    J Struct Biol; 2015 Dec; 192(3):358-365. PubMed ID: 26431896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.