These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27691718)

  • 1. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.
    Lv XM; Song JS; Li J; Zhai K
    Environ Technol; 2017 Aug; 38(15):1835-1842. PubMed ID: 27691718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of excess sludge production in sequencing batch reactor (SBR) by lysis-cryptic growth using homogenization disruption.
    Lan W; Li Y; Bi Q; Hu Y
    Bioresour Technol; 2013 Apr; 134():43-50. PubMed ID: 23500558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment.
    Ma H; Zhang S; Lu X; Xi B; Guo X; Wang H; Duan J
    Bioresour Technol; 2012 Jul; 116():441-7. PubMed ID: 22522015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation.
    Wang G; Sui J; Shen H; Liang S; He X; Zhang M; Xie Y; Li L; Hu Y
    J Hazard Mater; 2011 Aug; 192(1):93-8. PubMed ID: 21620565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process.
    Wu XL; Guan YT; Zhang X; Huang X; Qian Y
    Environ Technol; 2002 Jun; 23(6):677-84. PubMed ID: 12118619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge.
    Zhang Y; Meng C; He Y; Wang X; Xue G
    Sci Total Environ; 2021 Oct; 789():148042. PubMed ID: 34323827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.
    Zubrowska-Sudol M; Walczak J
    Water Res; 2015 Jun; 76():10-8. PubMed ID: 25776916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the accumulation of ash, heavy metals, and polycyclic aromatic hydrocarbons to assess the stability of lysis-cryptic growth sludge reduction in sequencing batch reactor.
    Li Y; Hu Y; Lan W; Yan J; Chen Y; Xu M
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24147-24155. PubMed ID: 28884430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic reduction of excess sludge from activated sludge system: energy efficiency improvement via operation optimization.
    He J; Wan T; Zhang G; Yang J
    Ultrason Sonochem; 2011 Jan; 18(1):99-103. PubMed ID: 20400353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.
    Peng H; Liu W; Li Y; Xiao H
    Water Sci Technol; 2015; 72(9):1534-42. PubMed ID: 26524444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic reduction of excess sludge from activated sludge system II: urban sewage treatment.
    Zhang G; He J; Zhang P; Zhang J
    J Hazard Mater; 2009 May; 164(2-3):1105-9. PubMed ID: 18926629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reduction of excess sludge production by cooperation action of Cu2+ and uncoupler].
    Ma ZK; Tian Y; Cheng HF
    Huan Jing Ke Xue; 2007 Aug; 28(8):1697-702. PubMed ID: 17926396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source.
    Kumar BM; Chaudhari S
    Water Sci Technol; 2003; 48(3):73-9. PubMed ID: 14518857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic reduction of excess sludge from the activated sludge system.
    Zhang G; Zhang P; Yang J; Chen Y
    J Hazard Mater; 2007 Jul; 145(3):515-9. PubMed ID: 17412495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
    Bal Krishna KC; Niaz MR; Sarker DC; Jansen T
    J Environ Manage; 2017 Sep; 200():359-365. PubMed ID: 28599219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.
    Yoon SH; Lee S
    Water Res; 2005 Sep; 39(15):3738-54. PubMed ID: 16061269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.
    Wu CY; Peng YZ; Wang RD; Zhou YX
    Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors.
    Datta T; Liu Y; Goel R
    Chemosphere; 2009 Jul; 76(5):697-705. PubMed ID: 19409599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.