These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 2769233)
41. Leishmania mexicana lipophosphoglycan differentially regulates PKCalpha-induced oxidative burst in macrophages of BALB/c and C57BL/6 mice. Delgado-Domínguez J; González-Aguilar H; Aguirre-García M; Gutiérrez-Kobeh L; Berzunza-Cruz M; Ruiz-Remigio A; Robles-Flores M; Becker I Parasite Immunol; 2010 Jun; 32(6):440-9. PubMed ID: 20500675 [TBL] [Abstract][Full Text] [Related]
42. Influence of mercuric chloride on resistance to generalized infection with herpes simplex virus type 2 in mice. Christensen MM; Ellermann-Eriksen S; Rungby J; Mogensen SC Toxicology; 1996 Nov; 114(1):57-66. PubMed ID: 8931761 [TBL] [Abstract][Full Text] [Related]
43. Effects of alpha- and beta-interferon on oxidative burst responses of monocytes and monocyte-derived macrophages from patients with HIV infection. Müller F; Rollag H; Frøland SS J Biol Regul Homeost Agents; 1990; 4(3):93-7. PubMed ID: 2135379 [TBL] [Abstract][Full Text] [Related]
44. Inability of tumour cells to elicit the respiratory burst in cytotoxic, activated macrophages. Bryant SM; Hill HR Immunology; 1982 Mar; 45(3):577-85. PubMed ID: 6277777 [TBL] [Abstract][Full Text] [Related]
45. Stimulation of genetic resistance to marrow grafts in mice by interferon-alpha/beta. Afifi MS; Kumar V; Bennett M J Immunol; 1985 Jun; 134(6):3739-45. PubMed ID: 2985694 [TBL] [Abstract][Full Text] [Related]
46. IFN-gamma differentially modulates the susceptibility of L1210 and P815 tumor targets for macrophage-mediated cytotoxicity. Role of macrophage-target interaction coupled to nitric oxide generation, but independent of tumor necrosis factor production. Leu RW; Leu NR; Shannon BJ; Fast DJ J Immunol; 1991 Sep; 147(6):1816-22. PubMed ID: 1909732 [TBL] [Abstract][Full Text] [Related]
47. Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains. de Gee AL; Sonnenfeld G; Mansfield JM J Immunol; 1985 Apr; 134(4):2723-6. PubMed ID: 2579155 [TBL] [Abstract][Full Text] [Related]
48. Variation in resistance of cells from inbred strains of mice to herpes simplex virus type 1. Collier LH; Scott QJ; Pani A J Gen Virol; 1983 Jul; 64 (Pt 7)():1483-90. PubMed ID: 6306148 [TBL] [Abstract][Full Text] [Related]
49. Role of interferon in persistent infection of macrophages with herpes simplex virus. Domke-Opitz I; Poberschin P; Mittnacht S; Kirchner H Virology; 1987 Aug; 159(2):306-11. PubMed ID: 2441521 [TBL] [Abstract][Full Text] [Related]
50. The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. Zawatzky R; Gresser I; DeMaeyer E; Kirchner H J Infect Dis; 1982 Sep; 146(3):405-10. PubMed ID: 6180032 [TBL] [Abstract][Full Text] [Related]
51. Effects of Histoplasma capsulatum on murine macrophage functions: inhibition of macrophage priming, oxidative burst, and antifungal activities. Wolf JE; Abegg AL; Travis SJ; Kobayashi GS; Little JR Infect Immun; 1989 Feb; 57(2):513-9. PubMed ID: 2912897 [TBL] [Abstract][Full Text] [Related]
52. Beta interferon produced by keratinocytes in human cutaneous infection with herpes simplex virus. Torseth JW; Nickoloff BJ; Basham TY; Merigan TC J Infect Dis; 1987 Apr; 155(4):641-8. PubMed ID: 2434580 [TBL] [Abstract][Full Text] [Related]
53. Global secretome characterization of herpes simplex virus 1-infected human primary macrophages. Miettinen JJ; Matikainen S; Nyman TA J Virol; 2012 Dec; 86(23):12770-8. PubMed ID: 22973042 [TBL] [Abstract][Full Text] [Related]
54. Recombinant interleukin-4 enhances the chemiluminescent oxidative burst of murine peritoneal macrophages. Tan HP; Nehlsen-Cannarella SL; Garberoglio CA; Tosk JM J Leukoc Biol; 1991 Jun; 49(6):587-91. PubMed ID: 2026963 [TBL] [Abstract][Full Text] [Related]
55. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus. Bonina L; Nash AA; Arena A; Leung KN; Wildy P Virus Res; 1984 Sep; 1(6):501-5. PubMed ID: 6335802 [TBL] [Abstract][Full Text] [Related]
56. Genetically determined resistance to murine cytomegalovirus: a role for lymphocytostatic macrophages. Price P; Winter JG; Shellam GR J Gen Virol; 1987 Dec; 68 ( Pt 12)():2997-3008. PubMed ID: 2826645 [TBL] [Abstract][Full Text] [Related]
57. Differential effects of recombinant human interferon-alpha A/D on expression of three types of Fc receptors on murine macrophages in vivo and in vitro. Yoshie O; Aso H; Sakakibara A; Ishida N J Interferon Res; 1985; 5(4):531-40. PubMed ID: 4086883 [TBL] [Abstract][Full Text] [Related]
58. Interferon structural genes do not participate in quantitative regulation of interferon production by If loci as shown in C57BL/6 mice that are congenic with BALB/c mice at the alpha interferon gene cluster. De Maeyer-Guignard J; Dandoy F; Bailey DW; De Maeyer E J Virol; 1986 Jun; 58(3):743-7. PubMed ID: 2422400 [TBL] [Abstract][Full Text] [Related]
59. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. Cantin E; Tanamachi B; Openshaw H; Mann J; Clarke K J Virol; 1999 Jun; 73(6):5196-200. PubMed ID: 10233988 [TBL] [Abstract][Full Text] [Related]
60. An X-linked locus influences the amount of circulating interferon induced in the mouse by herpes simplex virus type 1. Zawatzky R; Kirchner H; DeMaeyer-Guignard J; DeMaeyer E J Gen Virol; 1982 Dec; 63(2):325-32. PubMed ID: 6185626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]