These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27692618)

  • 1. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.
    Borges Sebastião I; Robinson TD; Alexeenko A
    J Pharm Sci; 2017 Jan; 106(1):183-192. PubMed ID: 27692618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC; Passot S; Marin M; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074501. PubMed ID: 19640137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk Dynamic Spray Freeze-Drying Part 2: Model-Based Parametric Study for Spray-Freezing Process Characterization.
    Sebastião IB; Bhatnagar B; Tchessalov S; Ohtake S; Plitzko M; Luy B; Alexeenko A
    J Pharm Sci; 2019 Jun; 108(6):2075-2085. PubMed ID: 30682340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-drying in protective bags: Characterization of heat and mass transfer.
    Chamberlain R; Schlauersbach J; Erber M
    Eur J Pharm Biopharm; 2020 Sep; 154():309-316. PubMed ID: 32681964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk Dynamic Spray Freeze-Drying Part 1: Modeling of Droplet Cooling and Phase Change.
    Sebastião IB; Bhatnagar B; Tchessalov S; Ohtake S; Plitzko M; Luy B; Alexeenko A
    J Pharm Sci; 2019 Jun; 108(6):2063-2074. PubMed ID: 30677417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.
    Yin F; Guo S; Gan Y; Zhang X
    Int J Nanomedicine; 2014; 9():1665-76. PubMed ID: 24729702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
    Ganguly A; Nail SL; Alexeenko A
    J Pharm Sci; 2013 May; 102(5):1610-25. PubMed ID: 23580359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.
    Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G
    J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless sensor networks for pharmaceutical lyophilization: Quantification of local gas pressure and temperature in primary drying.
    Strongrich A; Alexeenko A
    Eur J Pharm Biopharm; 2021 Dec; 169():52-63. PubMed ID: 34547415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric Spray Freeze Drying of Sugar Solution With Phage D29.
    Ly A; Carrigy NB; Wang H; Harrison M; Sauvageau D; Martin AR; Vehring R; Finlay WH
    Front Microbiol; 2019; 10():488. PubMed ID: 30949139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer during freeze-drying in dual-chamber cartridges.
    Korpus C; Haase T; Sönnichsen C; Friess W
    J Pharm Sci; 2015 May; 104(5):1750-8. PubMed ID: 25712903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process.
    Giordano A; Barresi AA; Fissore D
    J Pharm Sci; 2011 Jan; 100(1):311-24. PubMed ID: 20575053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.