These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27692798)

  • 1. Biomechanical responses to changes in friction on a clay court surface.
    Starbuck C; Stiles V; Urà D; Carré M; Dixon S
    J Sci Med Sport; 2017 May; 20(5):459-463. PubMed ID: 27692798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of tennis court surfaces on player perceptions and biomechanical response.
    Starbuck C; Damm L; Clarke J; Carré M; Capel-Davis J; Miller S; Stiles V; Dixon S
    J Sports Sci; 2016 Sep; 34(17):1627-36. PubMed ID: 26699792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of surface traction characteristics on frictional demand and kinematics in tennis.
    Damm L; Low D; Richardson A; Clarke J; Carré M; Dixon S
    Sports Biomech; 2013 Nov; 12(4):389-402. PubMed ID: 24466651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of shoe drop on the kinematics and kinetics of children tennis players.
    Herbaut A; Chavet P; Roux M; Guéguen N; Gillet C; Barbier F; Simoneau-Buessinger E
    Eur J Sport Sci; 2016 Nov; 16(8):1121-9. PubMed ID: 27210455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Limb Maneuver Investigation of Chasse Steps Among Male Elite Table Tennis Players.
    Yu C; Shao S; Awrejcewicz J; Baker JS; Gu Y
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30965645
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiological coxa varus-genu valgus influences internal knee and ankle joint moments in females during crossover cutting.
    Nyland JA; Caborn DN
    Knee Surg Sports Traumatol Arthrosc; 2004 Jul; 12(4):285-93. PubMed ID: 14618320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromechanical adaptations to slippery sport shoes.
    Morio CYM; Herbaut A
    Hum Mov Sci; 2018 Jun; 59():212-222. PubMed ID: 29734063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.
    Catena RD; Xu X
    Ergonomics; 2015; 58(9):1571-80. PubMed ID: 25782076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of external ankle support on knee and ankle joint movement and loading in netball players.
    Vanwanseele B; Stuelcken M; Greene A; Smith R
    J Sci Med Sport; 2014 Sep; 17(5):511-5. PubMed ID: 23948246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower limb joint angular position and muscle activity during elliptical exercise in healthy young men.
    Paquette MR; Zucker-Levin A; DeVita P; Hoekstra J; Pearsall D
    J Appl Biomech; 2015 Feb; 31(1):19-27. PubMed ID: 25268277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses.
    Silver-Thorn B; Herrmann A; Current T; McGuire J
    Prosthet Orthot Int; 2011 Jun; 35(2):150-62. PubMed ID: 21515899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Body-Weight-Support Running on Lower-Limb Biomechanics.
    Neal M; Fleming N; Eberman L; Games K; Vaughan J
    J Orthop Sports Phys Ther; 2016 Sep; 46(9):784-93. PubMed ID: 27581179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of different playing surfaces on the biomechanics of a tennis running forehand foot plant.
    Stiles VH; Dixon SJ
    J Appl Biomech; 2006 Feb; 22(1):14-24. PubMed ID: 16760563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity.
    Rice H; Fallowfield J; Allsopp A; Dixon S
    Ergonomics; 2017 May; 60(5):649-656. PubMed ID: 27462759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in Vertical and Joint Stiffness in Runners With Advancing Age.
    Powell DW; Williams DSB
    J Strength Cond Res; 2018 Dec; 32(12):3416-3422. PubMed ID: 28240709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading.
    Firminger CR; Edwards WB
    J Sci Med Sport; 2016 Dec; 19(12):975-979. PubMed ID: 27107980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associations between lower limb muscle activation strategies and resultant multi-planar knee kinetics during single leg landings.
    Brown TN; McLean SG; Palmieri-Smith RM
    J Sci Med Sport; 2014 Jul; 17(4):408-13. PubMed ID: 23849907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of negative joint work and vertical ground reaction force loading rates in Chi runners and rearfoot-striking runners.
    Goss DL; Gross MT
    J Orthop Sports Phys Ther; 2013 Oct; 43(10):685-92. PubMed ID: 24256170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
    Wang H; Frame J; Ozimek E; Leib D; Dugan EL
    Res Q Exerc Sport; 2013 Sep; 84(3):305-12. PubMed ID: 24261009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.