These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 27692897)

  • 41. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling.
    Vlasova AD; Bukhalovich SM; Bagaeva DF; Polyakova AP; Ilyinsky NS; Nesterov SV; Tsybrov FM; Bogorodskiy AO; Zinovev EV; Mikhailov AE; Vlasov AV; Kuklin AI; Borshchevskiy VI; Bamberg E; Uversky VN; Gordeliy VI
    Chem Soc Rev; 2024 Apr; 53(7):3327-3349. PubMed ID: 38391026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.
    Govorunova EG; Sineshchekov OA; Janz R; Liu X; Spudich JL
    Science; 2015 Aug; 349(6248):647-50. PubMed ID: 26113638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optogenetic control of endogenous Ca(2+) channels in vivo.
    Kyung T; Lee S; Kim JE; Cho T; Park H; Jeong YM; Kim D; Shin A; Kim S; Baek J; Kim J; Kim NY; Woo D; Chae S; Kim CH; Shin HS; Han YM; Kim D; Heo WD
    Nat Biotechnol; 2015 Oct; 33(10):1092-6. PubMed ID: 26368050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The clinical potential of optogenetic interrogation of pathogenesis.
    Gao TT; Oh TJ; Mehta K; Huang YA; Camp T; Fan H; Han JW; Barnes CM; Zhang K
    Clin Transl Med; 2023 May; 13(5):e1243. PubMed ID: 37132114
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation.
    Yang C; Cui M; Zhang Y; Pan H; Liu J; Wang S; Ma N; Chang J; Sun T; Wang H
    Commun Biol; 2020 Oct; 3(1):561. PubMed ID: 33037315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetics: opsins and optical interfaces in neuroscience.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):815-22. PubMed ID: 25086025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synapses in the spotlight with synthetic optogenetics.
    Berlin S; Isacoff EY
    EMBO Rep; 2017 May; 18(5):677-692. PubMed ID: 28396573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Let there be light: zebrafish neurobiology and the optogenetic revolution.
    Wyart C; Del Bene F
    Rev Neurosci; 2011; 22(1):121-30. PubMed ID: 21615266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Remote Optogenetics Using Up/Down-Conversion Phosphors.
    Matsubara T; Yamashita T
    Front Mol Biosci; 2021; 8():771717. PubMed ID: 34805279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects.
    Sardoiwala MN; Srivastava AK; Karmakar S; Roy Choudhury S
    ACS Chem Neurosci; 2019 Aug; 10(8):3375-3385. PubMed ID: 31244053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards translational optogenetics.
    Bansal A; Shikha S; Zhang Y
    Nat Biomed Eng; 2023 Apr; 7(4):349-369. PubMed ID: 35027688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural Resources for Optogenetic Tools.
    Mathes T
    Methods Mol Biol; 2016; 1408():19-36. PubMed ID: 26965113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An optogenetic approach in epilepsy.
    Kokaia M; Andersson M; Ledri M
    Neuropharmacology; 2013 Jun; 69():89-95. PubMed ID: 22698957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetic manipulation of ENS - The brain in the gut.
    Wang W
    Life Sci; 2018 Jan; 192():18-25. PubMed ID: 29155296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.
    Kaberniuk AA; Shemetov AA; Verkhusha VV
    Nat Methods; 2016 Jul; 13(7):591-7. PubMed ID: 27159085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lights up on organelles: Optogenetic tools to control subcellular structure and organization.
    Kichuk TC; Carrasco-López C; Avalos JL
    WIREs Mech Dis; 2021 Jan; 13(1):e1500. PubMed ID: 32715616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.
    Mathony J; Niopek D
    Adv Biol (Weinh); 2021 May; 5(5):e2000181. PubMed ID: 33107225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
    Banerjee S; Mitra D
    Trends Plant Sci; 2020 Jan; 25(1):35-65. PubMed ID: 31699521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.