These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27693063)

  • 1. On the validity and errors of the pseudo-first-order kinetics in ligand-receptor binding.
    Stroberg W; Schnell S
    Math Biosci; 2017 May; 287():3-11. PubMed ID: 27693063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental considerations of the pseudo-first-order approximation in conventional kinetic analysis of IAsys biosensor data.
    Hall DR; Gorgani NN; Altin JG; Winzor DJ
    Anal Biochem; 1997 Nov; 253(2):145-55. PubMed ID: 9367496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor binding kinetics equations: Derivation using the Laplace transform method.
    Hoare SRJ
    J Pharmacol Toxicol Methods; 2018; 89():26-38. PubMed ID: 28818556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate method for determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves.
    Horovitz A; Levitzki A
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6654-8. PubMed ID: 3477796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical kinetic model for ligand binding to identical and independent binding sites in vivo.
    Bond JP; Notides AC
    Anal Biochem; 1988 Nov; 175(1):238-51. PubMed ID: 2854373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics.
    Goldstein B; Dembo M
    Biophys J; 1995 Apr; 68(4):1222-30. PubMed ID: 7787014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of some "insoluble" problems of determining the binding parameters of ligand-receptor interaction and methods of their solving].
    Bobrovnik SA
    Ukr Biokhim Zh (1999); 2004; 76(6):5-28. PubMed ID: 16350740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology.
    O'Shannessy DJ; Winzor DJ
    Anal Biochem; 1996 May; 236(2):275-83. PubMed ID: 8660505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic models of sorption: a theoretical analysis.
    Azizian S
    J Colloid Interface Sci; 2004 Aug; 276(1):47-52. PubMed ID: 15219428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of binding the mRNA cap analogues to the translation initiation factor eIF4E under second-order reaction conditions.
    Błachut-Okrasińska E; Bojarska E; Stepiński J; Antosiewicz JM
    Biophys Chem; 2007 Sep; 129(2-3):289-97. PubMed ID: 17651889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of allosteric conformational transition of a macromolecule prior to ligand binding: analysis of stopped-flow kinetic experiments.
    Galletto R; Jezewska MJ; Bujalowski W
    Cell Biochem Biophys; 2005; 42(2):121-44. PubMed ID: 15858229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A perspective into ligand-receptor affinities using complex numbers.
    Klotz IM
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7191-4. PubMed ID: 8394012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension and Justification of Quasi-Steady-State Approximation for Reversible Bimolecular Binding.
    Kollár R; Šišková K
    Bull Math Biol; 2015 Jul; 77(7):1401-36. PubMed ID: 26223735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of ligand-receptor association data that display an overshoot phenomenon.
    Lutz RA; Kopp M; Pliska V
    J Recept Signal Transduct Res; 1995; 15(1-4):691-702. PubMed ID: 8903973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor.
    Singh V; Nemenman I
    PLoS Comput Biol; 2017 Apr; 13(4):e1005490. PubMed ID: 28410433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of protein-protein interactions at the surface of an optical biosensor.
    Edwards PR; Gill A; Pollard-Knight DV; Hoare M; Buckle PE; Lowe PA; Leatherbarrow RJ
    Anal Biochem; 1995 Oct; 231(1):210-7. PubMed ID: 8678303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetics of bivalent ligand-bivalent receptor aggregation: ring formation and the breakdown of the equivalent site approximation.
    Posner RG; Wofsy C; Goldstein B
    Math Biosci; 1995 Apr; 126(2):171-90. PubMed ID: 7703593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport.
    Rudzinski W; Plazinski W
    J Phys Chem B; 2006 Aug; 110(33):16514-25. PubMed ID: 16913785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new, simple and robust radioligand binding method used to determine kinetic off-rate constants for unlabeled ligands. Application at α2A- and α2C-adrenoceptors.
    Uhlén S; Schiöth HB; Jahnsen JA
    Eur J Pharmacol; 2016 Oct; 788():113-121. PubMed ID: 27318322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.