These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analyzing the function of the insert region found between the α and β-subunits in the eukaryotic nitrile hydratase from Monosiga brevicollis. Yang X; Bennett B; Holz RC Arch Biochem Biophys; 2018 Nov; 657():1-7. PubMed ID: 30205086 [TBL] [Abstract][Full Text] [Related]
3. A nitrile hydratase in the eukaryote Monosiga brevicollis. Foerstner KU; Doerks T; Muller J; Raes J; Bork P PLoS One; 2008; 3(12):e3976. PubMed ID: 19096720 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the pK(a) of metal-bound water via oxidation of thiolato sulfur in model complexes of Co(III) containing nitrile hydratase: insight into possible effect of cysteine oxidation in Co-nitrile hydratase. Tyler LA; Noveron JC; Olmstead MM; Mascharak PK Inorg Chem; 2003 Sep; 42(18):5751-61. PubMed ID: 12950226 [TBL] [Abstract][Full Text] [Related]
5. Insights into catalytic activity of industrial enzyme Co-nitrile hydratase. Docking studies of nitriles and amides. Peplowski L; Kubiak K; Nowak W J Mol Model; 2007 Jul; 13(6-7):725-30. PubMed ID: 17333306 [TBL] [Abstract][Full Text] [Related]
6. Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. Nojiri M; Nakayama H; Odaka M; Yohda M; Takio K; Endo I FEBS Lett; 2000 Jan; 465(2-3):173-7. PubMed ID: 10631329 [TBL] [Abstract][Full Text] [Related]
7. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. Liu Y; Cui W; Xia Y; Cui Y; Kobayashi M; Zhou Z PLoS One; 2012; 7(11):e50829. PubMed ID: 23226397 [TBL] [Abstract][Full Text] [Related]
8. The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Kuhn ML; Martinez S; Gumataotao N; Bornscheuer U; Liu D; Holz RC Biochem Biophys Res Commun; 2012 Aug; 424(3):365-70. PubMed ID: 22713452 [TBL] [Abstract][Full Text] [Related]
9. Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Kobayashi M; Nishiyama M; Nagasawa T; Horinouchi S; Beppu T; Yamada H Biochim Biophys Acta; 1991 Dec; 1129(1):23-33. PubMed ID: 1840499 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Pei X; Wang J; Wu Y; Zhen X; Tang M; Wang Q; Wang A Appl Microbiol Biotechnol; 2018 Sep; 102(18):7891-7900. PubMed ID: 29998413 [TBL] [Abstract][Full Text] [Related]
11. Metallochaperone function of the self-subunit swapping chaperone involved in the maturation of subunit-fused cobalt-type nitrile hydratase. Xia Y; Peplowski L; Cheng Z; Wang T; Liu Z; Cui W; Kobayashi M; Zhou Z Biotechnol Bioeng; 2019 Mar; 116(3):481-489. PubMed ID: 30418672 [TBL] [Abstract][Full Text] [Related]
12. Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. Nojiri M; Yohda M; Odaka M; Matsushita Y; Tsujimura M; Yoshida T; Dohmae N; Takio K; Endo I J Biochem; 1999 Apr; 125(4):696-704. PubMed ID: 10101282 [TBL] [Abstract][Full Text] [Related]
13. Substrate selectivity and conformational space available to bromoxynil and acrylonitrile in iron nitrile hydratase. Desai LV; Zimmer M Dalton Trans; 2004 Mar; (6):872-7. PubMed ID: 15252471 [TBL] [Abstract][Full Text] [Related]
14. Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Cameron RA; Sayed M; Cowan DA Biochim Biophys Acta; 2005 Aug; 1725(1):35-46. PubMed ID: 15955632 [TBL] [Abstract][Full Text] [Related]
15. Functional Expression and Characterization of a Panel of Cobalt and Iron-Dependent Nitrile Hydratases. Grill B; Glänzer M; Schwab H; Steiner K; Pienaar D; Brady D; Donsbach K; Winkler M Molecules; 2020 May; 25(11):. PubMed ID: 32481666 [TBL] [Abstract][Full Text] [Related]
16. Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase. Tian Y; Chen J; Yu H; Shen Z J Microbiol Biotechnol; 2016 Feb; 26(2):337-46. PubMed ID: 26562693 [TBL] [Abstract][Full Text] [Related]
17. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center. Arakawa T; Kawano Y; Kataoka S; Katayama Y; Kamiya N; Yohda M; Odaka M J Mol Biol; 2007 Mar; 366(5):1497-509. PubMed ID: 17222425 [TBL] [Abstract][Full Text] [Related]
18. Why is there an "inert" metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model. Shearer J; Kung IY; Lovell S; Kaminsky W; Kovacs JA J Am Chem Soc; 2001 Jan; 123(3):463-8. PubMed ID: 11456548 [TBL] [Abstract][Full Text] [Related]
19. Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Rzeznicka K; Schätzle S; Böttcher D; Klein J; Bornscheuer UT Appl Microbiol Biotechnol; 2010 Feb; 85(5):1417-25. PubMed ID: 19662400 [TBL] [Abstract][Full Text] [Related]
20. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Kobayashi M; Shimizu S Nat Biotechnol; 1998 Aug; 16(8):733-6. PubMed ID: 9702770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]