BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27693290)

  • 1. Recent advances in inferring viral diversity from high-throughput sequencing data.
    Posada-Cespedes S; Seifert D; Beerenwinkel N
    Virus Res; 2017 Jul; 239():17-32. PubMed ID: 27693290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. aBayesQR: A Bayesian Method for Reconstruction of Viral Populations Characterized by Low Diversity.
    Ahn S; Vikalo H
    J Comput Biol; 2018 Jul; 25(7):637-648. PubMed ID: 29480740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-deep sequencing for the analysis of viral populations.
    Beerenwinkel N; Zagordi O
    Curr Opin Virol; 2011 Nov; 1(5):413-8. PubMed ID: 22440844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSdpR: Viral quasispecies reconstruction via correlation clustering.
    Barik S; Das S; Vikalo H
    Genomics; 2018 Nov; 110(6):375-381. PubMed ID: 29268961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A binning tool to reconstruct viral haplotypes from assembled contigs.
    Chen J; Shang J; Wang J; Sun Y
    BMC Bioinformatics; 2019 Nov; 20(1):544. PubMed ID: 31684876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of haplotype callers for next-generation sequencing of viruses.
    Eliseev A; Gibson KM; Avdeyev P; Novik D; Bendall ML; Pérez-Losada M; Alexeev N; Crandall KA
    Infect Genet Evol; 2020 Aug; 82():104277. PubMed ID: 32151775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput sequencing (HTS) for the analysis of viral populations.
    Pérez-Losada M; Arenas M; Galán JC; Bracho MA; Hillung J; García-González N; González-Candelas F
    Infect Genet Evol; 2020 Jun; 80():104208. PubMed ID: 32001386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of viral haplotype reconstruction programmes: an overview of the capacities and limitations of currently available programmes.
    Schirmer M; Sloan WT; Quince C
    Brief Bioinform; 2014 May; 15(3):431-42. PubMed ID: 23257116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral quasispecies assembly via maximal clique enumeration.
    Töpfer A; Marschall T; Bull RA; Luciani F; Schönhuth A; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003515. PubMed ID: 24675810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics tools for analysing viral genomic data.
    Orton RJ; Gu Q; Hughes J; Maabar M; Modha S; Vattipally SB; Wilkie GS; Davison AJ
    Rev Sci Tech; 2016 Apr; 35(1):271-85. PubMed ID: 27217183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of deep sequencing methods for inferring viral population diversity.
    Huang SW; Hung SJ; Wang JR
    J Virol Methods; 2019 Apr; 266():95-102. PubMed ID: 30690049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo haplotype reconstruction in viral quasispecies using paired-end read guided path finding.
    Chen J; Zhao Y; Sun Y
    Bioinformatics; 2018 Sep; 34(17):2927-2935. PubMed ID: 29617936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the complex evolution of rapidly mutating viruses with deep sequencing: Beyond the analysis of viral diversity.
    Leung P; Eltahla AA; Lloyd AR; Bull RA; Luciani F
    Virus Res; 2017 Jul; 239():43-54. PubMed ID: 27888126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum.
    Isakov O; Bordería AV; Golan D; Hamenahem A; Celniker G; Yoffe L; Blanc H; Vignuzzi M; Shomron N
    Bioinformatics; 2015 Jul; 31(13):2141-50. PubMed ID: 25701575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus detection in high-throughput sequencing data without a reference genome of the host.
    Kruppa J; Jo WK; van der Vries E; Ludlow M; Osterhaus A; Baumgaertner W; Jung K
    Infect Genet Evol; 2018 Dec; 66():180-187. PubMed ID: 30292006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of viral population structure from next-generation sequencing data using multicommodity flows.
    Skums P; Mancuso N; Artyomenko A; Tork B; Mandoiu I; Khudyakov Y; Zelikovsky A
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S2. PubMed ID: 23902469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era.
    Knyazev S; Hughes L; Skums P; Zelikovsky A
    Brief Bioinform; 2021 Jan; 22(1):96-108. PubMed ID: 32568371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral quasispecies inference from 454 pyrosequencing.
    Poh WT; Xia E; Chin-Inmanu K; Wong LP; Cheng AY; Malasit P; Suriyaphol P; Teo YY; Ong RT
    BMC Bioinformatics; 2013 Dec; 14():355. PubMed ID: 24308284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus Quasispecies Rarefaction: Subsampling with or without Replacement?
    Gregori J; Ibañez-Lligoña M; Colomer-Castell S; Campos C; Quer J
    Viruses; 2024 Apr; 16(5):. PubMed ID: 38793592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the application of high-throughput sequencing in invertebrate virology.
    van Aerle R; Santos EM
    J Invertebr Pathol; 2017 Jul; 147():145-156. PubMed ID: 28249815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.