BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 27693387)

  • 1. Alterations in the bone marrow microenvironment may elicit defective hematopoiesis: a comparison of aplastic anemia, chronic myeloid leukemia, and normal bone marrow.
    Park M; Park CJ; Cho YW; Jang S; Lee JH; Lee JH; Lee KH; Lee YH
    Exp Hematol; 2017 Jan; 45():56-63. PubMed ID: 27693387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced expression of osteonectin and increased natural killer cells may contribute to the pathophysiology of aplastic anemia.
    Park M; Park CJ; Jang S; Kim DY; Lee JH; Lee JH; Lee KH; Hwang K; Lee YH
    Appl Immunohistochem Mol Morphol; 2015 Feb; 23(2):139-45. PubMed ID: 25032754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.
    Wu L; Mo W; Zhang Y; Zhou M; Li Y; Zhou R; Xu S; Pan S; Deng H; Mao P; Wang S
    Int J Hematol; 2017 Jul; 106(1):71-81. PubMed ID: 28303517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages.
    Bhatia R; McGlave PB; Dewald GW; Blazar BR; Verfaillie CM
    Blood; 1995 Jun; 85(12):3636-45. PubMed ID: 7780147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment of hematopoietic stem cell niches in patients with aplastic anemia.
    Wu L; Mo W; Zhang Y; Deng H; Li Y; Zhou R; Zhang L; Pan S; Wang S
    Int J Hematol; 2015 Dec; 102(6):645-53. PubMed ID: 26440975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia.
    Mukaida N; Tanabe Y; Baba T
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28829353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation in the ability of bone marrow stroma from patients with acute myeloid leukemia but not chronic myeloid leukemia to support normal early hematopoietic progenitor cells.
    Sparrow RL; O'Flaherty E; Blanksby TM; Szer J; Van Der Weyden MB
    Leuk Res; 1997 Jan; 21(1):29-36. PubMed ID: 9029183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colony growth in cultures from bone marrow and peripheral blood after curative treatment for leukemia and severe aplastic anemia.
    Betticher DC; Huxol H; Müller R; Speck B; Nissen C
    Exp Hematol; 1993 Nov; 21(12):1517-21. PubMed ID: 8405233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe functional alterations in vitro in CD34(+) cell subpopulations from patients with chronic myeloid leukemia.
    Chávez-González A; Rosas-Cabral A; Vela-Ojeda J; González JC; Mayani H
    Leuk Res; 2004 Jun; 28(6):639-47. PubMed ID: 15120942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic impairment of haemopoietic stem cells in experimentally induced leukemia and aplastic anemia: an inverse correlation.
    Chatterjee S; Basak P; Das M; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2009; 4(3):179-89. PubMed ID: 20232602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis of aplastic anemia.
    Wang L; Liu H
    Hematology; 2019 Dec; 24(1):559-566. PubMed ID: 31315542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GATA-1, -2 and -3 genes expression in bone marrow microenviroment with chronic aplastic anemia.
    Wu X; Li Y; Zhu K; Wang Z; Chen S; Yang L
    Hematology; 2007 Aug; 12(4):331-5. PubMed ID: 17654061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression.
    McCabe A; Smith JNP; Costello A; Maloney J; Katikaneni D; MacNamara KC
    Haematologica; 2018 Sep; 103(9):1451-1461. PubMed ID: 29773597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special Education: Aplastic Anemia.
    Teramura M; Mizoguchi H
    Oncologist; 1996; 1(3):187-189. PubMed ID: 10387986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia.
    Chatterjee R; Law S
    Eur J Cell Biol; 2018 Jan; 97(1):32-43. PubMed ID: 29173808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chemokines in chronic myeloid leukemia].
    Mukaida N; Baba T
    Rinsho Ketsueki; 2016 Feb; 57(2):129-36. PubMed ID: 26935630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor.
    Corrado C; Saieva L; Raimondo S; Santoro A; De Leo G; Alessandro R
    J Cell Mol Med; 2016 Oct; 20(10):1829-39. PubMed ID: 27196940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD106 is a novel mediator of bone marrow mesenchymal stem cells via NF-κB in the bone marrow failure of acquired aplastic anemia.
    Lu S; Ge M; Zheng Y; Li J; Feng X; Feng S; Huang J; Feng Y; Yang D; Shi J; Chen F; Han Z
    Stem Cell Res Ther; 2017 Aug; 8(1):178. PubMed ID: 28764810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematopoietic growth factors and marrow stroma in aplastic anemia.
    Koijima S
    Int J Hematol; 1998 Jul; 68(1):19-28. PubMed ID: 9713165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIP-1α/CCL3-expressing basophil-lineage cells drive the leukemic hematopoiesis of chronic myeloid leukemia in mice.
    Baba T; Tanabe Y; Yoshikawa S; Yamanishi Y; Morishita S; Komatsu N; Karasuyama H; Hirao A; Mukaida N
    Blood; 2016 May; 127(21):2607-17. PubMed ID: 27006388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.