These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Sarem M; Arya N; Heizmann M; Neffe AT; Barbero A; Gebauer TP; Martin I; Lendlein A; Shastri VP Acta Biomater; 2018 Mar; 69():83-94. PubMed ID: 29378326 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Wang ZH; Zhang J; Zhang Q; Gao Y; Yan J; Zhao XY; Yang YY; Kong DM; Zhao J; Shi YX; Li XL Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525846 [TBL] [Abstract][Full Text] [Related]
4. Chondrogenic properties of primary human chondrocytes culture in hyaluronic acid treated gelatin scaffold. Pruksakorn D; Khamwaen N; Pothacharoen P; Arpornchayanon O; Rojanasthien S; Kongtawelert P J Med Assoc Thai; 2009 Apr; 92(4):483-90. PubMed ID: 19374298 [TBL] [Abstract][Full Text] [Related]
5. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. Li J; Zhao Q; Wang E; Zhang C; Wang G; Yuan Q J Cell Physiol; 2012 May; 227(5):2003-12. PubMed ID: 21751209 [TBL] [Abstract][Full Text] [Related]
6. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Foyt DA; Taheem DK; Ferreira SA; Norman MDA; Petzold J; Jell G; Grigoriadis AE; Gentleman E Acta Biomater; 2019 Apr; 89():73-83. PubMed ID: 30844569 [TBL] [Abstract][Full Text] [Related]
7. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Cai R; Nakamoto T; Kawazoe N; Chen G Biomaterials; 2015 Jun; 52():199-207. PubMed ID: 25818426 [TBL] [Abstract][Full Text] [Related]
8. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Jeong CG; Zhang H; Hollister SJ Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597 [TBL] [Abstract][Full Text] [Related]
10. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Mohan N; Nair PD Tissue Eng Part A; 2010 Feb; 16(2):373-84. PubMed ID: 19566439 [TBL] [Abstract][Full Text] [Related]
11. Cartilage tissue engineering with demineralized bone matrix gelatin and fibrin glue hybrid scaffold: an in vitro study. Wang ZH; He XJ; Yang ZQ; Tu JB Artif Organs; 2010 Feb; 34(2):161-6. PubMed ID: 20420593 [TBL] [Abstract][Full Text] [Related]
12. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Cheng NC; Estes BT; Awad HA; Guilak F Tissue Eng Part A; 2009 Feb; 15(2):231-41. PubMed ID: 18950290 [TBL] [Abstract][Full Text] [Related]
13. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N; Chen J; Zhang G; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Kemppainen JM; Hollister SJ Biomaterials; 2010 Jan; 31(2):279-87. PubMed ID: 19818489 [TBL] [Abstract][Full Text] [Related]
15. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Almeida HV; Liu Y; Cunniffe GM; Mulhall KJ; Matsiko A; Buckley CT; O'Brien FJ; Kelly DJ Acta Biomater; 2014 Oct; 10(10):4400-9. PubMed ID: 24907658 [TBL] [Abstract][Full Text] [Related]
16. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Matsiko A; Gleeson JP; O'Brien FJ Tissue Eng Part A; 2015 Feb; 21(3-4):486-97. PubMed ID: 25203687 [TBL] [Abstract][Full Text] [Related]
17. Chondrogenic Differentiation Could Be Induced by Autologous Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix Scaffolds Without Exogenous Growth Factor. Tang C; Jin C; Xu Y; Wei B; Wang L Tissue Eng Part A; 2016 Feb; 22(3-4):222-32. PubMed ID: 26603220 [TBL] [Abstract][Full Text] [Related]
18. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
19. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation. Li YY; Choy TH; Ho FC; Chan PB Biomaterials; 2015 Jun; 52():208-20. PubMed ID: 25818427 [TBL] [Abstract][Full Text] [Related]
20. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness. Wang T; Lai JH; Han LH; Tong X; Yang F Tissue Eng Part A; 2014 Aug; 20(15-16):2131-9. PubMed ID: 24707837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]