BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27693703)

  • 1. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants.
    Oliveira HC; Gomes BC; Pelegrino MT; Seabra AB
    Nitric Oxide; 2016 Dec; 61():10-19. PubMed ID: 27693703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Antiprotozoal Activity of Nitric Oxide-releasing Chitosan Nanoparticles Against Trypanosoma cruzi: Toxicity and Mechanisms of Action.
    Contreras Lancheros CA; Pelegrino MT; Kian D; Tavares ER; Hiraiwa PM; Goldenberg S; Nakamura CV; Yamauchi LM; Pinge-Filho P; Seabra AB; Yamada-Ogatta SF
    Curr Pharm Des; 2018; 24(7):830-839. PubMed ID: 29424305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings.
    do Carmo GC; Iastrenski LF; Debiasi TV; da Silva RC; Gomes DG; Pelegrino MT; Bianchini E; Stolf-Moreira R; Pimenta JA; Seabra AB; Oliveira HC
    Ecotoxicol Environ Saf; 2021 Dec; 225():112713. PubMed ID: 34478983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery.
    Lopes-Oliveira PJ; Gomes DG; Pelegrino MT; Bianchini E; Pimenta JA; Stolf-Moreira R; Seabra AB; Oliveira HC
    Sci Rep; 2019 Nov; 9(1):17371. PubMed ID: 31758079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis.
    Cardozo VF; Lancheros CA; Narciso AM; Valereto EC; Kobayashi RK; Seabra AB; Nakazato G
    Int J Pharm; 2014 Oct; 473(1-2):20-9. PubMed ID: 24979535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications.
    Urzedo AL; Gonçalves MC; Nascimento MHM; Lombello CB; Nakazato G; Seabra AB
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110933. PubMed ID: 32409079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants under Copper Stress.
    Gomes DG; Debiasi TV; Pelegrino MT; Pereira RM; Ondrasek G; Batista BL; Seabra AB; Oliveira HC
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivering nitric oxide into human skin from encapsulated S-nitrosoglutathione under UV light: An in vitro and ex vivo study.
    Pelegrino MT; Weller RB; Paganotti A; Seabra AB
    Nitric Oxide; 2020 Jan; 94():108-113. PubMed ID: 31759127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity.
    Pelegrino MT; Pieretti JC; Nakazato G; Gonçalves MC; Moreira JC; Seabra AB
    Nitric Oxide; 2021 Jan; 106():24-34. PubMed ID: 33098968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor Potential of S-Nitrosothiol-Containing Polymeric Nanoparticles against Melanoma.
    Ferraz LS; Watashi CM; Colturato-Kido C; Pelegrino MT; Paredes-Gamero EJ; Weller RB; Seabra AB; Rodrigues T
    Mol Pharm; 2018 Mar; 15(3):1160-1168. PubMed ID: 29378125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (
    Sheikhalipour M; Esmaielpour B; Gohari G; Haghighi M; Jafari H; Farhadi H; Kulak M; Kalisz A
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide-releasing nanomaterials: from basic research to potential biotechnological applications in agriculture.
    Seabra AB; Silveira NM; Ribeiro RV; Pieretti JC; Barroso JB; Corpas FJ; Palma JM; Hancock JT; Petřivalský M; Gupta KJ; Wendehenne D; Loake GJ; Durner J; Lindermayr C; Molnár Á; Kolbert Z; Oliveira HC
    New Phytol; 2022 May; 234(4):1119-1125. PubMed ID: 35266146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform.
    Cabral FV; Pelegrino MT; Sauter IP; Seabra AB; Cortez M; Ribeiro MS
    Nitric Oxide; 2019 Dec; 93():25-33. PubMed ID: 31541732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants.
    Silveira NM; Seabra AB; Marcos FCC; Pelegrino MT; Machado EC; Ribeiro RV
    Nitric Oxide; 2019 Mar; 84():38-44. PubMed ID: 30639449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and s-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment.
    Seabra AB; Pasquôto T; Ferrarini AC; Santos Mda C; Haddad PS; de Lima R
    Chem Res Toxicol; 2014 Jul; 27(7):1207-18. PubMed ID: 24949992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of storability and antioxidant systems of sweet cherry fruit by nitric oxide-releasing chitosan nanoparticles (GSNO-CS NPs).
    Ma Y; Fu L; Hussain Z; Huang D; Zhu S
    Food Chem; 2019 Jul; 285():10-21. PubMed ID: 30797323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant.
    Kumaraswamy RV; Kumari S; Choudhary RC; Sharma SS; Pal A; Raliya R; Biswas P; Saharan V
    Int J Biol Macromol; 2019 Feb; 123():59-69. PubMed ID: 30389525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells.
    Kumar SP; Birundha K; Kaveri K; Devi KT
    Int J Biol Macromol; 2015; 78():87-95. PubMed ID: 25840152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of cadaverine content by NO in salt-stressed maize.
    Simon-Sarkadi L; Ludidi N; Kocsy G
    Plant Signal Behav; 2014; 9(1):e27598. PubMed ID: 24398894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize.
    Bai X; Yang L; Yang Y; Ahmad P; Yang Y; Hu X
    J Proteome Res; 2011 Oct; 10(10):4349-64. PubMed ID: 21846115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.