These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27693807)

  • 1. An image-processing based technique to obtain instantaneous horizontal walking and running speed.
    Nagano A; Fujimoto M; Kudo S; Akaguma R
    Gait Posture; 2017 Jan; 51():7-9. PubMed ID: 27693807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.
    Minetti AE; Gaudino P; Seminati E; Cazzola D
    J Appl Physiol (1985); 2013 Feb; 114(4):498-503. PubMed ID: 23221963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: A concurrent validity study.
    Macpherson TW; Taylor J; McBain T; Weston M; Spears IR
    J Biomech; 2016 Feb; 49(3):474-8. PubMed ID: 26718063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated feet detection for clinical gait assessment.
    Serrano MM; Yu-Ping Chen ; Howard A; Vela PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2161-2164. PubMed ID: 28268760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camera-Based Human Gait Speed Monitoring and Tracking for Performance Assessment of Elderly Patients with Cancer.
    Duncan L; Gulati P; Giri S; Ostadabbas S; Abdollah Mirbozorgi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3522-3525. PubMed ID: 34891999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Measuring human arm motion parameters based on high-speed camera].
    Zhao D; Zhang W; Sun Z; Chen Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):76-9. PubMed ID: 11951529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of human walking and running parameters as a function of speed.
    Paróczai R; Kocsis L
    Technol Health Care; 2006; 14(4-5):251-60. PubMed ID: 17065748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of speed and step frequency during walking and running on motion sensor output.
    Rowlands AV; Stone MR; Eston RG
    Med Sci Sports Exerc; 2007 Apr; 39(4):716-27. PubMed ID: 17414811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing state of motion through two-dimensional foot and shoe print analysis: A pilot study.
    Neves FB; Arnold GP; Nasir S; Wang W; MacDonald C; Christie I; Abboud RJ
    Forensic Sci Int; 2018 Mar; 284():176-183. PubMed ID: 29408727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal-spatial gait parameter models of very slow walking.
    Smith AJJ; Lemaire ED
    Gait Posture; 2018 Mar; 61():125-129. PubMed ID: 29331720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From canonical poses to 3D motion capture using a single camera.
    Fossati A; Dimitrijevic M; Lepetit V; Fua P
    IEEE Trans Pattern Anal Mach Intell; 2010 Jul; 32(7):1165-81. PubMed ID: 20489222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of a low-cost laser with freely available software for improving measurement of walking and running speed.
    Clark RA; Pua YH; Bower KJ; Bechard L; Hough E; Charlton PC; Mentiplay B
    J Sci Med Sport; 2019 Feb; 22(2):212-216. PubMed ID: 30029889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal variation in gait characteristics and transition speed.
    Bessot N; Lericollais R; Gauthier A; Sesboüé B; Bulla J; Moussay S
    Chronobiol Int; 2015 Feb; 32(1):136-42. PubMed ID: 25229209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans.
    Minetti AE; Boldrini L; Brusamolin L; Zamparo P; McKee T
    J Appl Physiol (1985); 2003 Aug; 95(2):838-43. PubMed ID: 12692139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum walking speed in multiple sclerosis assessed with visual perceptive computing.
    Grobelny A; Behrens JR; Mertens S; Otte K; Mansow-Model S; Krüger T; Gusho E; Bellmann-Strobl J; Paul F; Brandt AU; Schmitz-Hübsch T
    PLoS One; 2017; 12(12):e0189281. PubMed ID: 29244874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.