These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 27693872)
1. A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell. Lee SL; Ho LN; Ong SA; Wong YS; Voon CH; Khalik WF; Yusoff NA; Nordin N Chemosphere; 2017 Jan; 166():118-125. PubMed ID: 27693872 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process. Nordin N; Ho LN; Ong SA; Ibrahim AH; Lee SL; Ong YP Chemosphere; 2019 Jan; 214():614-622. PubMed ID: 30292044 [TBL] [Abstract][Full Text] [Related]
3. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell. Lee SL; Ho LN; Ong SA; Wong YS; Voon CH; Khalik WF; Yusoff NA; Nordin N Chemosphere; 2018 Mar; 194():675-681. PubMed ID: 29247929 [TBL] [Abstract][Full Text] [Related]
4. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system. Khalik WF; Ho LN; Ong SA; Voon CH; Wong YS; Yusoff N; Lee SL; Yusuf SY Chemosphere; 2017 Oct; 184():112-119. PubMed ID: 28586651 [TBL] [Abstract][Full Text] [Related]
5. A synergistic heterostructured ZnO/BaTiO Ong YP; Ho LN; Ong SA; Banjuraizah J; Ibrahim AH; Lee SL; Nordin N Chemosphere; 2019 Mar; 219():277-285. PubMed ID: 30543963 [TBL] [Abstract][Full Text] [Related]
6. Influence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process. Nordin N; Ho LN; Ong SA; Ibrahim AH; Wong YS; Lee SL; Oon YS; Oon YL Environ Sci Pollut Res Int; 2017 Oct; 24(29):23331-23340. PubMed ID: 28840563 [TBL] [Abstract][Full Text] [Related]
7. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell. Khalik WF; Ong SA; Ho LN; Wong YS; Voon CH; Yusuf SY; Yusoff NA; Lee SL Environ Sci Pollut Res Int; 2016 Aug; 23(16):16716-21. PubMed ID: 27184147 [TBL] [Abstract][Full Text] [Related]
8. Eminent destruction of organics and pathogens concomitant with power generation in a visible light-responsive photocatalytic fuel cell with NiFe Lam SM; Sin JC; Warren Tong MW; Zeng H; Li H; Huang L; Lin H; Lim JW Chemosphere; 2023 Dec; 344():140402. PubMed ID: 37838031 [TBL] [Abstract][Full Text] [Related]
9. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Fang Z; Song HL; Cang N; Li XN Bioresour Technol; 2013 Sep; 144():165-71. PubMed ID: 23867535 [TBL] [Abstract][Full Text] [Related]
10. Greywater and bacteria removal with synchronized energy production in photocatalytic fuel cell based on anodic TiO Lam SM; Sin JC; Lin H; Li H; Zeng H Chemosphere; 2020 Apr; 245():125565. PubMed ID: 31855765 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. Nishio J; Tokumura M; Znad HT; Kawase Y J Hazard Mater; 2006 Nov; 138(1):106-15. PubMed ID: 16806676 [TBL] [Abstract][Full Text] [Related]
12. Converting synthetic azo dye and real textile wastewater into clean energy by using synthesized CuO/C as photocathode in dual-photoelectrode photocatalytic fuel cell. Khalik WF; Ho LN; Ong SA; Lai NB; Thor SH; Yap KL Environ Sci Pollut Res Int; 2023 Apr; 30(20):58516-58526. PubMed ID: 36988807 [TBL] [Abstract][Full Text] [Related]
13. Decolorization and mineralization of reactive dyes by a photocatalytic process using ZnO and UV radiation. Almeida Guerra WN; Teixeira Santos JM; Raddi de Araujo LR Water Sci Technol; 2012; 66(1):158-64. PubMed ID: 22678213 [TBL] [Abstract][Full Text] [Related]
14. Kinetic study of laser-induced photocatalytic degradation of dye (alizarin yellow) from wastewater using nanostructured ZnO. Hayat K; Gondal MA; Khaled MM; Ahmed S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1413-20. PubMed ID: 20694880 [TBL] [Abstract][Full Text] [Related]
15. Comparison of dye degradation efficiency using ZnO powders with various size scales. Wang H; Xie C; Zhang W; Cai S; Yang Z; Gui Y J Hazard Mater; 2007 Mar; 141(3):645-52. PubMed ID: 16930825 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite. Kıranşan M; Khataee A; Karaca S; Sheydaei M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():465-73. PubMed ID: 25638428 [TBL] [Abstract][Full Text] [Related]
17. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Kansal SK; Singh M; Sud D J Hazard Mater; 2007 Mar; 141(3):581-90. PubMed ID: 16919871 [TBL] [Abstract][Full Text] [Related]
18. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Miran W; Nawaz M; Kadam A; Shin S; Heo J; Jang J; Lee DS Environ Sci Pollut Res Int; 2015 Sep; 22(17):13477-85. PubMed ID: 25940481 [TBL] [Abstract][Full Text] [Related]
19. Multi-functional photocatalytic fuel cell for simultaneous removal of organic pollutant and chromium (VI) accompanied with electricity production. Liu XH; Xing ZH; Chen QY; Wang YH Chemosphere; 2019 Dec; 237():124457. PubMed ID: 31382197 [TBL] [Abstract][Full Text] [Related]
20. Disclosing the mutual influence of photocatalytic fuel cell and photoelectro-Fenton process in the fabrication of a sustainable hybrid system for efficient Amaranth dye removal and simultaneous electricity production. Thor SH; Ho LN; Ong SA; Abidin CZA; Heah CY; Yap KL Environ Sci Pollut Res Int; 2023 Mar; 30(12):34363-34377. PubMed ID: 36512276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]