BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 27693947)

  • 1. Identification of non-resistant ROS-1 inhibitors using structure based pharmacophore analysis.
    Pathak D; Chadha N; Silakari O
    J Mol Graph Model; 2016 Nov; 70():85-93. PubMed ID: 27693947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Flavonoids as Putative ROS-1 Kinase Inhibitors Using Pharmacophore Modeling for NSCLC Therapeutics.
    Parate S; Kumar V; Hong JC; Lee KW
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33917039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacophore based virtual screening, molecular docking and molecular dynamic simulation studies for finding ROS1 kinase inhibitors as potential drug molecules.
    Vanajothi R; Vedagiri H; Al-Ansari MM; Al-Humaid LA; Kumpati P
    J Biomol Struct Dyn; 2022 May; 40(8):3385-3399. PubMed ID: 33200682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of novel 2,4-diarylaminopyrimidine analogues as ALK and ROS1 dual inhibitors to overcome crizotinib-resistant mutants including G1202R.
    Wang Y; Chen S; Hu G; Wang J; Gou W; Zuo D; Gu Y; Gong P; Zhai X
    Eur J Med Chem; 2018 Jan; 143():123-136. PubMed ID: 29174809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-based and e-pharmacophore modeling, 3D-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3).
    Kaur M; Silakari O
    J Biomol Struct Dyn; 2017 Nov; 35(14):3043-3060. PubMed ID: 27678281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors.
    Vyas VK; Ghate M; Goel A
    J Mol Graph Model; 2013 May; 42():17-25. PubMed ID: 23507201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the binding mechanism of loratinib with the c-ros oncogene 1 (ROS1) receptor tyrosine kinase via molecular dynamics simulation and binding free energy calculations.
    Wu X; Wang Y; Wan S; Zhang J
    J Biomol Struct Dyn; 2018 Sep; 36(12):3106-3113. PubMed ID: 28893136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Design for ALK-Positive NSCLC: an Integrated Pharmacophore-Based 3D QSAR and Virtual Screening Strategy.
    James N; Shanthi V; Ramanathan K
    Appl Biochem Biotechnol; 2018 May; 185(1):289-315. PubMed ID: 29134510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacophore modeling and virtual screening in search of novel Bruton's tyrosine kinase inhibitors.
    Sharma A; Thelma BK
    J Mol Model; 2019 Jun; 25(7):179. PubMed ID: 31172362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Potent ALK Inhibitors Using Pharmacophore-Informatics Strategy.
    James N; Ramanathan K
    Cell Biochem Biophys; 2018 Jun; 76(1-2):111-124. PubMed ID: 28477056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective virtual screening strategy focusing on the identification of novel Bruton's tyrosine kinase inhibitors.
    Xiao J; Zhang S; Luo M; Zou Y; Zhang Y; Lai Y
    J Mol Graph Model; 2015 Jul; 60():142-54. PubMed ID: 26043662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors.
    Hu Y; Zhou L; Zhu X; Dai D; Bao Y; Qiu Y
    J Biomol Struct Dyn; 2019 Jul; 37(10):2703-2715. PubMed ID: 30052133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations.
    Zou HY; Li Q; Engstrom LD; West M; Appleman V; Wong KA; McTigue M; Deng YL; Liu W; Brooun A; Timofeevski S; McDonnell SR; Jiang P; Falk MD; Lappin PB; Affolter T; Nichols T; Hu W; Lam J; Johnson TW; Smeal T; Charest A; Fantin VR
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3493-8. PubMed ID: 25733882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally unraveling how ceritinib overcomes drug-resistance mutations in ALK-rearranged lung cancer.
    Ni Z; Zhang TC
    J Mol Model; 2015 Jul; 21(7):175. PubMed ID: 26084268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites.
    Li J; Sun R; Wu Y; Song M; Li J; Yang Q; Chen X; Bao J; Zhao Q
    Int J Mol Sci; 2017 Feb; 18(3):. PubMed ID: 28245558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease.
    Iqbal S; Anantha Krishnan D; Gunasekaran K
    J Biomol Struct Dyn; 2018 Nov; 36(15):4029-4044. PubMed ID: 29182053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.
    Chaudhari P; Bari S
    Mol Divers; 2016 Feb; 20(1):41-53. PubMed ID: 26416560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Validation of Crizotinib Resistance to ALK Mutations (L1196M and G1269A) and Identification of Specific Inhibitors.
    Nagasundaram N; Wilson Alphonse CR; Samuel Gnana PV; Rajaretinam RK
    J Cell Biochem; 2017 Oct; 118(10):3462-3471. PubMed ID: 28332225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Novel Inhibitors for Bruton's Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation.
    Bavi R; Kumar R; Choi L; Woo Lee K
    PLoS One; 2016; 11(1):e0147190. PubMed ID: 26784025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacophore-Based 3D-QSAR Modeling, Virtual Screening and Molecular Docking Analysis for the Detection of MERTK Inhibitors with Novel Scaffold.
    Zhou S; Zhou L; Cui R; Tian Y; Li X; You R; Zhong L
    Comb Chem High Throughput Screen; 2016; 19(1):73-96. PubMed ID: 26632441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.