BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27693956)

  • 1. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.
    Lanovaz JL; Oates AR; Treen TT; Unger J; Musselman KE
    Gait Posture; 2017 Jan; 51():14-19. PubMed ID: 27693956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults.
    Voss S; Joyce J; Biskis A; Parulekar M; Armijo N; Zampieri C; Tracy R; Palmer AS; Fefferman M; Ouyang B; Liu Y; Berry-Kravis E; O'Keefe JA
    Gait Posture; 2020 Jul; 80():206-213. PubMed ID: 32531757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait characteristics in healthy seniors.
    Donath L; Faude O; Lichtenstein E; Pagenstert G; Nüesch C; Mündermann A
    Gait Posture; 2016 Sep; 49():371-374. PubMed ID: 27494305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals.
    Ensink C; Smulders K; Warnar J; Keijsers N
    PeerJ; 2023; 11():e16641. PubMed ID: 38111664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparability between wearable inertial sensors and an electronic walkway for spatiotemporal and relative phase data in young children aged 6-11 years.
    Carroll K; Kennedy RA; Koutoulas V; Werake U; Bui M; Kraan CM
    Gait Posture; 2024 Jun; 111():30-36. PubMed ID: 38615566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.
    Proessl F; Swanson CW; Rudroff T; Fling BW; Tracy BL
    Gait Posture; 2018 Jul; 64():63-67. PubMed ID: 29859414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.
    Veilleux LN; Raison M; Rauch F; Robert M; Ballaz L
    Gait Posture; 2016 Jan; 43():257-64. PubMed ID: 26552654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of Spatio-Temporal Gait Parameters in Healthy Young Adults Using a Motion-Sensor-Based Gait Analysis System (ORPHE ANALYTICS) during Walking and Running.
    Uno Y; Ogasawara I; Konda S; Yoshida N; Otsuka N; Kikukawa Y; Tsujii A; Nakata K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy Verification of Spatio-Temporal and Kinematic Parameters for Gait Using Inertial Measurement Unit System.
    Yeo SS; Park GY
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system.
    Kanko RM; Laende EK; Strutzenberger G; Brown M; Selbie WS; DePaul V; Scott SH; Deluzio KJ
    J Biomech; 2021 Jun; 122():110414. PubMed ID: 33915475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters.
    Ripic Z; Signorile JF; Kuenze C; Eltoukhy M
    J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM; Bliss R; Hall JB; Kiselica AM
    Gait Posture; 2022 Jul; 96():130-136. PubMed ID: 35635988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity Analysis of WalkerView
    Bravi M; Massaroni C; Santacaterina F; Di Tocco J; Schena E; Sterzi S; Bressi F; Miccinilli S
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables.
    Mentiplay BF; Perraton LG; Bower KJ; Pua YH; McGaw R; Heywood S; Clark RA
    J Biomech; 2015 Jul; 48(10):2166-70. PubMed ID: 26065332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Spatiotemporal and Kinematic Measures in Functional Exercises Using a Minimal Modeling Inertial Sensor Methodology.
    Hindle BR; Keogh JWL; Lorimer AV
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.