BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27693995)

  • 21. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilized Nanoscale Zerovalent Iron Mediated Cadmium Accumulation and Oxidative Damage of Boehmeria nivea (L.) Gaudich Cultivated in Cadmium Contaminated Sediments.
    Gong X; Huang D; Liu Y; Zeng G; Wang R; Wan J; Zhang C; Cheng M; Qin X; Xue W
    Environ Sci Technol; 2017 Oct; 51(19):11308-11316. PubMed ID: 28850225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications.
    Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ
    J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge.
    Wu D; Shen Y; Ding A; Mahmood Q; Liu S; Tu Q
    J Hazard Mater; 2013 Nov; 262():649-55. PubMed ID: 24121637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent iron immobilized on organobentonite.
    Li Y; Zhang Y; Li J; Zheng X
    Environ Pollut; 2011 Dec; 159(12):3744-9. PubMed ID: 21906860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.
    Jing C; Landsberger S; Li YL
    J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution.
    Petala E; Dimos K; Douvalis A; Bakas T; Tucek J; Zbořil R; Karakassides MA
    J Hazard Mater; 2013 Oct; 261():295-306. PubMed ID: 23959249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reduction of chromium (VI) by nanoscale zero-valent iron supported on Al-pillared bentonite].
    Yin LJ; Li YM; Zhang LJ; Peng YF; Ying ZL
    Huan Jing Ke Xue; 2009 Apr; 30(4):1055-9. PubMed ID: 19545005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane.
    Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH
    J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the sustainable use of co-pyrolyzed dredged sediment for the in situ remediation of Cd polluted sediments in coastal rivers.
    Liu Q; Sheng Y; Wang Z; Liu X
    J Hazard Mater; 2024 Mar; 466():133664. PubMed ID: 38309161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.
    Suanon F; Sun Q; Mama D; Li J; Dimon B; Yu CP
    Water Res; 2016 Jan; 88():897-903. PubMed ID: 26613183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism.
    Li X; Zhao Y; Xi B; Meng X; Gong B; Li R; Peng X; Liu H
    J Environ Sci (China); 2017 Feb; 52():8-17. PubMed ID: 28254061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.
    Peng L; Liu Y; Gao SH; Chen X; Xin P; Dai X; Ni BJ
    Sci Rep; 2015 Jul; 5():12331. PubMed ID: 26199053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A; Costanza J; Pennell KD; Abriola LM
    J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.
    Kim DG; Hwang YH; Shin HS; Ko SO
    Environ Technol; 2013; 34(9-12):1625-35. PubMed ID: 24191498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).
    Chang YC; Huang SC; Chen KF
    Water Sci Technol; 2014; 69(11):2357-63. PubMed ID: 24901632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.