These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27694768)

  • 1. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM).
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Microorganisms; 2013 Nov; 1(1):137-157. PubMed ID: 27694768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains.
    Iwasaki Y; Abe T; Wada Y; Wada K; Ikemura T
    BMC Infect Dis; 2013 Aug; 13():386. PubMed ID: 23964903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.
    Bai Y; Iwasaki Y; Kanaya S; Zhao Y; Ikemura T
    Biomed Res Int; 2014; 2014():765648. PubMed ID: 24804244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of self-compressing BLSOM for comprehensive analysis of big sequence data.
    Kikuchi A; Ikemura T; Abe T
    Biomed Res Int; 2015; 2015():506052. PubMed ID: 26495297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Genes Genet Syst; 2017 Sep; 92(1):43-54. PubMed ID: 28344190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel bioinformatics strategy for searching industrially useful genome resources from metagenomic sequence libraries.
    Uehara H; Iwasaki Y; Wada C; Ikemura T; Abe T
    Genes Genet Syst; 2011; 86(1):53-66. PubMed ID: 21498923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome.
    Ikemura T; Iwasaki Y; Wada K; Wada Y; Abe T
    Genes Genet Syst; 2021 Dec; 96(4):165-176. PubMed ID: 34565757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of directional changes of influenza A virus genome sequences with emphasis on pandemic H1N1/09 as a model case.
    Iwasaki Y; Abe T; Wada K; Itoh M; Ikemura T
    DNA Res; 2011 Apr; 18(2):125-36. PubMed ID: 21444341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch-Learning Self-Organizing Map Identifies Horizontal Gene Transfer Candidates and Their Origins in Entire Genomes.
    Abe T; Akazawa Y; Toyoda A; Niki H; Baba T
    Front Microbiol; 2020; 11():1486. PubMed ID: 32719664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance.
    Iwasaki Y; Wada K; Wada Y; Abe T; Ikemura T
    Chromosome Res; 2013 Aug; 21(5):461-74. PubMed ID: 23896648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.
    Abe T; Inokuchi H; Yamada Y; Muto A; Iwasaki Y; Ikemura T
    Front Genet; 2014; 5():114. PubMed ID: 24822057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary changes in vertebrate genome signatures with special focus on coelacanth.
    Iwasaki Y; Abe T; Okada N; Wada K; Wada Y; Ikemura T
    DNA Res; 2014 Oct; 21(5):459-67. PubMed ID: 24800745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes.
    Abe T; Sugawara H; Kanaya S; Kinouchi M; Ikemura T
    Gene; 2006 Jan; 365():27-34. PubMed ID: 16364569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.
    Abe T; Hamano Y; Ikemura T
    Biomed Res Int; 2014; 2014():985706. PubMed ID: 24741568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel bioinformatics strategy for function prediction of poorly-characterized protein genes obtained from metagenome analyses.
    Abe T; Kanaya S; Uehara H; Ikemura T
    DNA Res; 2009 Oct; 16(5):287-97. PubMed ID: 19801558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CG-containing oligonucleotides and transcription factor-binding motifs are enriched in human pericentric regions.
    Wada Y; Iwasaki Y; Abe T; Wada K; Tooyama I; Ikemura T
    Genes Genet Syst; 2015; 90(1):43-53. PubMed ID: 26119665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised explainable AI for molecular evolutionary study of forty thousand SARS-CoV-2 genomes.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    BMC Microbiol; 2022 Mar; 22(1):73. PubMed ID: 35272618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic analysis of the human genome and six bat genomes using unsupervised machine learning: Mb-level CpG and TFBS islands.
    Iwasaki Y; Ikemura T; Wada K; Wada Y; Abe T
    BMC Genomics; 2022 Jul; 23(1):497. PubMed ID: 35804296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples.
    Abe T; Sugawara H; Kinouchi M; Kanaya S; Ikemura T
    DNA Res; 2005; 12(5):281-90. PubMed ID: 16769690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.