BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27694850)

  • 1. Dynamic peptide libraries for the discovery of supramolecular nanomaterials.
    Pappas CG; Shafi R; Sasselli IR; Siccardi H; Wang T; Narang V; Abzalimov R; Wijerathne N; Ulijn RV
    Nat Nanotechnol; 2016 Nov; 11(11):960-967. PubMed ID: 27694850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence Adaptive Peptide-Polysaccharide Nanostructures by Biocatalytic Self-Assembly.
    Abul-Haija YM; Ulijn RV
    Biomacromolecules; 2015 Nov; 16(11):3473-9. PubMed ID: 26418176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL).
    Das AK; Hirsth AR; Ulijn RV
    Faraday Discuss; 2009; 143():293-303; discussion 359-72. PubMed ID: 20334108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries.
    Sasselli IR; Moreira IP; Ulijn RV; Tuttle T
    Org Biomol Chem; 2017 Aug; 15(31):6541-6547. PubMed ID: 28745772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library.
    Yang PP; Li YJ; Cao Y; Zhang L; Wang JQ; Lai Z; Zhang K; Shorty D; Xiao W; Cao H; Wang L; Wang H; Liu R; Lam KS
    Nat Commun; 2021 Jul; 12(1):4494. PubMed ID: 34301935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Principles of Peptide Based Self-Assembled Nanomaterials.
    Seoudi RS; Mechler A
    Adv Exp Med Biol; 2017; 1030():51-94. PubMed ID: 29081050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures.
    Subbalakshmi C; Basak P; Nagaraj R
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.
    Berdugo C; Nalluri SK; Javid N; Escuder B; Miravet JF; Ulijn RV
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25946-54. PubMed ID: 26540455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.
    Subbalakshmi C; Manorama SV; Nagaraj R
    J Pept Sci; 2012 May; 18(5):283-92. PubMed ID: 22431418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides.
    Xing Q; Zhang J; Xie Y; Wang Y; Qi W; Rao H; Su R; He Z
    ACS Nano; 2018 Dec; 12(12):12305-12314. PubMed ID: 30452865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-assisted self-assembly under thermodynamic control.
    Williams RJ; Smith AM; Collins R; Hodson N; Das AK; Ulijn RV
    Nat Nanotechnol; 2009 Jan; 4(1):19-24. PubMed ID: 19119277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.
    Shen X; Mo X; Moore R; Frazier SJ; Iwamoto T; Tomich JM; Sun XS
    J Nanosci Nanotechnol; 2006 Mar; 6(3):837-44. PubMed ID: 16573147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coassembly of amphiphiles with opposite peptide polarities into nanofibers.
    Behanna HA; Donners JJ; Gordon AC; Stupp SI
    J Am Chem Soc; 2005 Feb; 127(4):1193-200. PubMed ID: 15669858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides.
    Guilbaud JB; Vey E; Boothroyd S; Smith AM; Ulijn RV; Saiani A; Miller AF
    Langmuir; 2010 Jul; 26(13):11297-303. PubMed ID: 20408518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.