BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27694850)

  • 21. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase.
    Collier JH; Messersmith PB
    Bioconjug Chem; 2003; 14(4):748-55. PubMed ID: 12862427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general method for designing combinatorial peptide libraries decodable by amino acid analysis.
    Kofoed J; Reymond JL
    J Comb Chem; 2007; 9(6):1046-52. PubMed ID: 17922554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of a peptide with a tandem repeat of the Aβ16-22 sequence linked by a β turn-promoting dipeptide sequence.
    Sivakama Sundari C; Bikshapathy E; Nagaraj R
    Biopolymers; 2015 Nov; 104(6):790-803. PubMed ID: 26473431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guiding principles for peptide nanotechnology through directed discovery.
    Lampel A; Ulijn RV; Tuttle T
    Chem Soc Rev; 2018 May; 47(10):3737-3758. PubMed ID: 29748676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures.
    Kumar M; Ing NL; Narang V; Wijerathne NK; Hochbaum AI; Ulijn RV
    Nat Chem; 2018 Jul; 10(7):696-703. PubMed ID: 29713031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polar-π Interactions Promote Self-assembly of Dipeptides into Laminated Nanofibers.
    Zhang H; Lou S; Yu Z
    Langmuir; 2019 Apr; 35(13):4710-4717. PubMed ID: 30836752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances.
    Bera S; Mondal S; Tang Y; Jacoby G; Arad E; Guterman T; Jelinek R; Beck R; Wei G; Gazit E
    ACS Nano; 2019 Feb; 13(2):1703-1712. PubMed ID: 30673213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IR-LD spectroscopic characterization of L-Tryptophan containing dipeptides.
    Ivanova BB
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):931-8. PubMed ID: 16488186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled peptide nanostructures for functional materials.
    Ekiz MS; Cinar G; Khalily MA; Guler MO
    Nanotechnology; 2016 Oct; 27(40):402002. PubMed ID: 27578525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alignment of nanostructured tripeptide gels by directional ultrasonication.
    Pappas CG; Frederix PW; Mutasa T; Fleming S; Abul-Haija YM; Kelly SM; Gachagan A; Kalafatovic D; Trevino J; Ulijn RV; Bai S
    Chem Commun (Camb); 2015 May; 51(40):8465-8. PubMed ID: 25891849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain.
    Lehrman JA; Cui H; Tsai WW; Moyer TJ; Stupp SI
    Chem Commun (Camb); 2012 Oct; 48(78):9711-3. PubMed ID: 22914175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
    Schnaider L; Brahmachari S; Schmidt NW; Mensa B; Shaham-Niv S; Bychenko D; Adler-Abramovich L; Shimon LJW; Kolusheva S; DeGrado WF; Gazit E
    Nat Commun; 2017 Nov; 8(1):1365. PubMed ID: 29118336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides.
    Higashi SL; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    Chemistry; 2019 Sep; 25(51):11955-11962. PubMed ID: 31268200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural diversity of alpha-amino acid based layer-block dendrons and their layer-block sequence-dependent gelation properties.
    Chow HF; Zhang J
    Chemistry; 2005 Oct; 11(20):5817-31. PubMed ID: 16034999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.