BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27694915)

  • 1. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.
    Ma D; Peng S; Xie Z
    Nat Commun; 2016 Oct; 7():13056. PubMed ID: 27694915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.
    Lebar T; Jerala R
    ACS Synth Biol; 2016 Oct; 5(10):1050-1058. PubMed ID: 27344932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
    Lebar T; Jerala R
    Methods Mol Biol; 2018; 1772():191-203. PubMed ID: 29754229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors.
    Baeumler TA; Ahmed AA; Fulga TA
    Cell Rep; 2017 Sep; 20(11):2639-2653. PubMed ID: 28903044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Control of a CRISPR-Cas9 Acetyltransferase.
    Shrimp JH; Grose C; Widmeyer SRT; Thorpe AL; Jadhav A; Meier JL
    ACS Chem Biol; 2018 Feb; 13(2):455-460. PubMed ID: 29309117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
    Lowder LG; Paul JW; Qi Y
    Methods Mol Biol; 2017; 1629():167-184. PubMed ID: 28623586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation.
    Gamboa L; Phung EV; Li H; Meyers JP; Hart AC; Miller IC; Kwong GA
    ACS Chem Biol; 2020 Feb; 15(2):533-542. PubMed ID: 31904924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells.
    Nissim L; Perli SD; Fridkin A; Perez-Pinera P; Lu TK
    Mol Cell; 2014 May; 54(4):698-710. PubMed ID: 24837679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation.
    Liu XH; Li BR; Ying ZM; Tang LJ; Wang F; Jiang JH
    ACS Chem Biol; 2022 Jul; 17(7):1769-1777. PubMed ID: 35700146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Input Sensing and Signal Integration Using a Split Cas12a System.
    Kempton HR; Goudy LE; Love KS; Qi LS
    Mol Cell; 2020 Apr; 78(1):184-191.e3. PubMed ID: 32027839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
    Polstein LR; Gersbach CA
    Nat Chem Biol; 2015 Mar; 11(3):198-200. PubMed ID: 25664691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control.
    Mahata B; Cabrera A; Brenner DA; Guerra-Resendez RS; Li J; Goell J; Wang K; Guo Y; Escobar M; Parthasarathy AK; Szadowski H; Bedford G; Reed DR; Kim S; Hilton IB
    Nat Methods; 2023 Nov; 20(11):1716-1728. PubMed ID: 37813990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Digital Circuits Based on CRISPR-Cas Systems and Anti-CRISPR Proteins.
    Yu L; Zhang Y; Marchisio MA
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36342156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable mammalian translational modulators by CRISPR-associated proteins.
    Kawasaki S; Ono H; Hirosawa M; Kuwabara T; Sumi S; Lee S; Woltjen K; Saito H
    Nat Commun; 2023 Apr; 14(1):2243. PubMed ID: 37076490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.