These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27695114)

  • 1. A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme Using Merged State Transitions in an FPGA.
    Kim H; Choi KI
    PLoS One; 2016; 11(10):e0163535. PubMed ID: 27695114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of pipelined FastICA on FPGA for real-time blind source separation.
    Shyu KK; Lee MH; Wu YT; Lee PL
    IEEE Trans Neural Netw; 2008 Jun; 19(6):958-70. PubMed ID: 18541497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A memory-efficient deterministic finite automaton-based bit-split string matching scheme using pattern uniqueness in deep packet inspection.
    Kim H; Choi KI; Choi SI
    PLoS One; 2015; 10(5):e0126517. PubMed ID: 25938779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asynchronous cellular automaton-based neuron: theoretical analysis and on-FPGA learning.
    Matsubara T; Torikai H
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):736-48. PubMed ID: 24808424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating string set matching in FPGA hardware for bioinformatics research.
    Dandass YS; Burgess SC; Lawrence M; Bridges SM
    BMC Bioinformatics; 2008 Apr; 9():197. PubMed ID: 18412963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event management for large scale event-driven digital hardware spiking neural networks.
    Caron LC; D'Haene M; Mailhot F; Schrauwen B; Rouat J
    Neural Netw; 2013 Sep; 45():83-93. PubMed ID: 23522624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FPGA implementation of a pyramidal Weightless Neural Networks learning system.
    Al-Alawi R
    Int J Neural Syst; 2003 Aug; 13(4):225-37. PubMed ID: 12964210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FPGA implementation of self organizing map with digital phase locked loops.
    Hikawa H
    Neural Netw; 2005; 18(5-6):514-22. PubMed ID: 16095877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
    Juang JG; Liu WK; Lin RW
    ISA Trans; 2011 Oct; 50(4):609-19. PubMed ID: 21802080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A type-2 self-organizing neural fuzzy system and its FPGA implementation.
    Juang CF; Tsao YW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1537-48. PubMed ID: 19022725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A memory efficient implementation scheme of Gauss error function in a Laguerre-Volterra network for neuroprosthetic devices.
    Li WXY; Cui K; Zhang W
    Rev Sci Instrum; 2017 Apr; 88(4):044301. PubMed ID: 28456231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCA: Search-Based Computing Hardware Architecture with Precision Scalable and Computation Reconfigurable Scheme.
    Chang L; Zhao X; Zhou J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization.
    Himavathi S; Anitha D; Muthuramalingam A
    IEEE Trans Neural Netw; 2007 May; 18(3):880-8. PubMed ID: 17526352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optimization on the Neuronal Networks Based on the ADEX Biological Model in Terms of LUT-State Behaviors: Digital Design and Realization on FPGA Platforms.
    Wang Y; Taylan O; Alkabaa AS; Ahmad I; Tag-Eldin E; Nazemi E; Balubaid M; Alqabbaa HS
    Biology (Basel); 2022 Jul; 11(8):. PubMed ID: 36009754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shared synapse architecture for efficient FPGA implementation of autoencoders.
    Suzuki A; Morie T; Tamukoh H
    PLoS One; 2018; 13(3):e0194049. PubMed ID: 29543909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation.
    Maeda Y; Wakamura M
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1664-72. PubMed ID: 16342505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks.
    Rostro-Gonzalez H; Cessac B; Girau B; Torres-Huitzil C
    J Physiol Paris; 2011; 105(1-3):91-7. PubMed ID: 21964248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.
    Yang S; Wang J; Li S; Deng B; Wei X; Yu H; Li H
    Neural Netw; 2015 Nov; 71():62-75. PubMed ID: 26318085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.