These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27695155)
21. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Aslani S; Dayan M; Storelli L; Filippi M; Murino V; Rocca MA; Sona D Neuroimage; 2019 Aug; 196():1-15. PubMed ID: 30953833 [TBL] [Abstract][Full Text] [Related]
22. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Dupont SM; De Leener B; Taso M; Le Troter A; Nadeau S; Stikov N; Callot V; Cohen-Adad J Neuroimage; 2017 Apr; 150():358-372. PubMed ID: 27663988 [TBL] [Abstract][Full Text] [Related]
23. Gray matter segmentation of the spinal cord with active contours in MR images. Datta E; Papinutto N; Schlaeger R; Zhu A; Carballido-Gamio J; Henry RG Neuroimage; 2017 Feb; 147():788-799. PubMed ID: 27495383 [TBL] [Abstract][Full Text] [Related]
24. Longitudinal multiple sclerosis lesion segmentation data resource. Carass A; Roy S; Jog A; Cuzzocreo JL; Magrath E; Gherman A; Button J; Nguyen J; Bazin PL; Calabresi PA; Crainiceanu CM; Ellingsen LM; Reich DS; Prince JL; Pham DL Data Brief; 2017 Jun; 12():346-350. PubMed ID: 28491937 [TBL] [Abstract][Full Text] [Related]
25. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images. Khastavaneh H; Ebrahimpour-Komleh H J Biomed Phys Eng; 2017 Jun; 7(2):155-162. PubMed ID: 28580337 [TBL] [Abstract][Full Text] [Related]
26. A comparison of sagittal short T1 inversion recovery and T2-weighted FSE sequences for detection of multiple sclerosis spinal cord lesions. Nayak NB; Salah R; Huang JC; Hathout GM Acta Neurol Scand; 2014 Mar; 129(3):198-203. PubMed ID: 23980614 [TBL] [Abstract][Full Text] [Related]
27. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Eden D; Gros C; Badji A; Dupont SM; De Leener B; Maranzano J; Zhuoquiong R; Liu Y; Granberg T; Ouellette R; Stawiarz L; Hillert J; Talbott J; Bannier E; Kerbrat A; Edan G; Labauge P; Callot V; Pelletier J; Audoin B; Rasoanandrianina H; Brisset JC; Valsasina P; Rocca MA; Filippi M; Bakshi R; Tauhid S; Prados F; Yiannakas M; Kearney H; Ciccarelli O; Smith SA; Andrada Treaba C; Mainero C; Lefeuvre J; Reich DS; Nair G; Shepherd TM; Charlson E; Tachibana Y; Hori M; Kamiya K; Chougar L; Narayanan S; Cohen-Adad J Brain; 2019 Mar; 142(3):633-646. PubMed ID: 30715195 [TBL] [Abstract][Full Text] [Related]
28. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917 [TBL] [Abstract][Full Text] [Related]
29. [Segmentation of multiple sclerosis lesions based on Markov random fields model for MR images]. Li B; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):861-5. PubMed ID: 19813627 [TBL] [Abstract][Full Text] [Related]
30. Locally adaptive magnetic resonance intensity models for unsupervised segmentation of multiple sclerosis lesions. Galimzianova A; Lesjak Ž; Rubin DL; Likar B; Pernuš F; Špiclin Ž J Med Imaging (Bellingham); 2018 Jan; 5(1):011007. PubMed ID: 29134190 [TBL] [Abstract][Full Text] [Related]
31. The Impact of MRI T1 Hypointense Brain Lesions on Cerebral Deep Gray Matter Volume Measures in Multiple Sclerosis. Buyukturkoglu K; Mormina E; De Jager PL; Riley CS; Leavitt VM J Neuroimaging; 2019 Jul; 29(4):458-462. PubMed ID: 30892794 [TBL] [Abstract][Full Text] [Related]
32. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D; Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724 [TBL] [Abstract][Full Text] [Related]
33. FLAIR Le M; Tang LYW; Hernández-Torres E; Jarrett M; Brosch T; Metz L; Li DKB; Traboulsee A; Tam RC; Rauscher A; Wiggermann V Neuroimage Clin; 2019; 23():101918. PubMed ID: 31491827 [TBL] [Abstract][Full Text] [Related]
34. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions. Valcarcel AM; Linn KA; Vandekar SN; Satterthwaite TD; Muschelli J; Calabresi PA; Pham DL; Martin ML; Shinohara RT J Neuroimaging; 2018 Jul; 28(4):389-398. PubMed ID: 29516669 [TBL] [Abstract][Full Text] [Related]
35. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Danelakis A; Theoharis T; Verganelakis DA Comput Med Imaging Graph; 2018 Dec; 70():83-100. PubMed ID: 30326367 [TBL] [Abstract][Full Text] [Related]
36. MR imaging quantitation of gray matter involvement in multiple sclerosis and its correlation with disability measures and neurocognitive testing. Catalaa I; Fulton JC; Zhang X; Udupa JK; Kolson D; Grossman M; Wei L; McGowan JC; Polansky M; Grossman RI AJNR Am J Neuroradiol; 1999 Oct; 20(9):1613-8. PubMed ID: 10543630 [TBL] [Abstract][Full Text] [Related]
37. Patch-Based Segmentation with Spatial Consistency: Application to MS Lesions in Brain MRI. Mechrez R; Goldberger J; Greenspan H Int J Biomed Imaging; 2016; 2016():7952541. PubMed ID: 26904103 [TBL] [Abstract][Full Text] [Related]
38. Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. Dong M; Oguz I; Subbana N; Calabresi P; Shinohara RT; Yushkevich P Patch Based Tech Med Imaging (2017); 2017 Sep; 10530():138-145. PubMed ID: 29707700 [TBL] [Abstract][Full Text] [Related]
39. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Granberg T; Fan Q; Treaba CA; Ouellette R; Herranz E; Mangeat G; Louapre C; Cohen-Adad J; Klawiter EC; Sloane JA; Mainero C Brain; 2017 Nov; 140(11):2912-2926. PubMed ID: 29053798 [TBL] [Abstract][Full Text] [Related]