These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27695391)

  • 1. Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion.
    Larose C; Harel O; Kordas K; Dey DK
    Stat Methodol; 2016 Sep; 32():107-121. PubMed ID: 27695391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting the model for multiple imputation of missing data: Just use an IC!
    Noghrehchi F; Stoklosa J; Penev S; Warton DI
    Stat Med; 2021 May; 40(10):2467-2497. PubMed ID: 33629367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Use of Entropy to Improve Model Selection Criteria.
    Murari A; Peluso E; Cianfrani F; Gaudio P; Lungaroni M
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Evaluation of Fit Indices Used in Model Selection of Dichotomous Mixture IRT Models.
    Sen S; Cohen AS
    Educ Psychol Meas; 2024 Jun; 84(3):481-509. PubMed ID: 38756464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent class based multiple imputation approach for missing categorical data.
    Gebregziabher M; DeSantis SM
    J Stat Plan Inference; 2010 Nov; 140(11):3252-3262. PubMed ID: 30555206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of incomplete-data methods for categorical data.
    van der Palm DW; van der Ark LA; Vermunt JK
    Stat Methods Med Res; 2016 Apr; 25(2):754-74. PubMed ID: 23166159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the number of components in PLS regression on incomplete data set.
    Nengsih TA; Bertrand F; Maumy-Bertrand M; Meyer N
    Stat Appl Genet Mol Biol; 2019 Nov; 18(6):. PubMed ID: 31693499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling.
    Huang PH
    Psychometrika; 2017 Jun; 82(2):407-426. PubMed ID: 28447310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review.
    Zhou M; Thayer WM; Bridges JFP
    Pharmacoeconomics; 2018 Feb; 36(2):175-187. PubMed ID: 28975582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between lower urinary tract symptoms and cardiovascular risk factors determine distinct patterns of erectile dysfunction: a latent class analysis.
    Barbosa JA; Muracca E; Nakano É; Assalin AR; Cordeiro P; Paranhos M; Cury J; Srougi M; Antunes AA
    J Urol; 2013 Dec; 190(6):2177-82. PubMed ID: 23727187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Power to Detect the Correct Number of Classes in Latent Profile Analysis.
    Tein JY; Coxe S; Cham H
    Struct Equ Modeling; 2013 Oct; 20(4):640-657. PubMed ID: 24489457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of growth mixture models in the presence of time-varying covariates.
    Diallo TMO; Morin AJS; Lu H
    Behav Res Methods; 2017 Oct; 49(5):1951-1965. PubMed ID: 27800579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonparametric multiple imputation approach for missing categorical data.
    Zhou M; He Y; Yu M; Hsu CH
    BMC Med Res Methodol; 2017 Jun; 17(1):87. PubMed ID: 28587662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On mining incomplete medical datasets: Ordering imputation and classification.
    Chen CW; Lin WC; Ke SW; Tsai CF; Hu YH
    Technol Health Care; 2015; 23(5):619-25. PubMed ID: 26410122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using AIC in Multiple Linear Regression framework with Multiply Imputed Data.
    Chaurasia A; Harel O
    Health Serv Outcomes Res Methodol; 2012 Jun; 12(2-3):219-233. PubMed ID: 22879799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cautions on the Use of Multiple Imputation When Selecting Between Latent Categorical versus Continuous Models for Psychological Constructs.
    Sterba SK
    J Clin Child Adolesc Psychol; 2016; 45(2):167-75. PubMed ID: 25491166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood.
    Ferro MA
    Ann Epidemiol; 2014 Jan; 24(1):75-7. PubMed ID: 24210708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polynomial order selection in random regression models via penalizing adaptively the likelihood.
    Corrales JD; Munilla S; Cantet RJ
    J Anim Breed Genet; 2015 Aug; 132(4):281-8. PubMed ID: 25622858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model selection of generalized estimating equations with multiply imputed longitudinal data.
    Shen CW; Chen YH
    Biom J; 2013 Nov; 55(6):899-911. PubMed ID: 23970494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariate Selection for Multilevel Models with Missing Data.
    Marino M; Buxton OM; Li Y
    Stat (Int Stat Inst); 2017; 6(1):31-46. PubMed ID: 28239457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.