These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27695767)

  • 1. Contrasting Nitrogen Fate in Watersheds Using Agricultural and Water Quality Information.
    Essaid HI; Baker NT; McCarthy KA
    J Environ Qual; 2016 Sep; 45(5):1616-1626. PubMed ID: 27695767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.
    Arenas Amado A; Schilling KE; Jones CS; Thomas N; Weber LJ
    Environ Monit Assess; 2017 Sep; 189(9):426. PubMed ID: 28766121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denitrification in the shallow ground water of a tile-drained, agricultural watershed.
    Mehnert E; Hwang HH; Johnson TM; Sanford RA; Beaumont WC; Holm TR
    J Environ Qual; 2007; 36(1):80-90. PubMed ID: 17215215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution.
    Hobbie SE; Finlay JC; Janke BD; Nidzgorski DA; Millet DB; Baker LA
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4177-4182. PubMed ID: 28373560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking nonpoint source nitrogen pollution in human-impacted watersheds.
    Kaushal SS; Groffman PM; Band LE; Elliott EM; Shields CA; Kendall C
    Environ Sci Technol; 2011 Oct; 45(19):8225-32. PubMed ID: 21830824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating principles of nitrogen dynamics in a method to estimate leachable nitrogen under agricultural systems.
    Burkart M; James D; Liebman M; van Ouwerkerk E
    Water Sci Technol; 2006; 53(2):289-301. PubMed ID: 16594348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa.
    Tomer MD; Meek DW; Jaynes DB; Hatfield JL
    J Environ Qual; 2003; 32(2):642-53. PubMed ID: 12708689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical transport from paired agricultural and restored prairie watersheds.
    Schilling KE
    J Environ Qual; 2002; 31(4):1184-93. PubMed ID: 12175036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds.
    Tesoriero AJ; Duff JH; Wolock DM; Spahr NE; Almendinger JE
    J Environ Qual; 2009; 38(5):1892-900. PubMed ID: 19643755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nitrogen budgets and source-sink characteristics of watershed in the hilly area of subtropical China].
    Huang LM; Yang JL; Zhang GL
    Huan Jing Ke Xue; 2010 Dec; 31(12):2981-7. PubMed ID: 21360889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds?
    Wilkes G; Sunohara MD; Topp E; Gottschall N; Craiovan E; Frey SK; Lapen DR
    Water Res; 2019 Mar; 151():423-438. PubMed ID: 30639728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.
    David MB; Mitchell CA; Gentry LE; Salemme RK
    J Environ Qual; 2016 Jan; 45(1):341-8. PubMed ID: 26828190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus losses from agricultural watersheds in the Mississippi Delta.
    Yuan Y; Locke MA; Bingner RL; Rebich RA
    J Environ Manage; 2013 Jan; 115():14-20. PubMed ID: 23220653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop improvement influences on water quantity and quality processes in an agricultural watershed.
    Ren D; Engel B; Tuinstra MR
    Water Res; 2022 Jun; 217():118353. PubMed ID: 35405549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agricultural practices influence flow regimes of headwater streams in western Iowa.
    Tomer MD; Meek DW; Kramer LA
    J Environ Qual; 2005; 34(5):1547-58. PubMed ID: 16091607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How much nutrient reaches a stream: Insights from a hybrid model and implications for watershed nitrogen export and removal.
    Zhang Z; Huang J; Chen S; Sun C
    J Environ Manage; 2024 Jun; 360():121104. PubMed ID: 38733845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds.
    Kalkhoff SJ; Hubbard LE; Tomer MD; James DE
    Sci Total Environ; 2016 Jul; 559():53-62. PubMed ID: 27054493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds.
    Valiela I; Bowen JL
    Environ Pollut; 2002; 118(2):239-48. PubMed ID: 11939286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.